-
Previous Article
New numerical methods for mean field games with quadratic costs
- NHM Home
- This Issue
-
Next Article
Long time average of mean field games
A-priori estimates for stationary mean-field games
1. | Departamento de Matemática and CAMGSD, IST Avenida Rovisco Pais, Lisboa, Portugal, Portugal |
2. | Instituto de Matem, Universidad Nacional Aut, M, Mexico |
References:
[1] |
SIAM J. Numer. Anal., 48 (2010), 1136-1162.
doi: 10.1137/090758477. |
[2] |
Math. Models Methods Appl. Sci., 20 (2010), 567-588.
doi: 10.1142/S0218202510004349. |
[3] |
SIAM J. Control Opt., 50 (2012), 77-109.
doi: 10.1137/100790069. |
[4] |
F. Cagnetti, D. Gomes and H. V. Tran, Adjoint methods for obstacle problems and weakly coupled systems of PDE,, submitted., (). Google Scholar |
[5] |
F. Cagnetti, D. Gomes and H. V. Tran, Aubry-Mather measures in the non convex setting,, submitted., (). Google Scholar |
[6] |
Arch. Ration. Mech. Anal., 201 (2011), 87-113.
doi: 10.1007/s00205-011-0399-x. |
[7] |
Calc. Var. Partial Differential Equations, 17 (2003), 159-177.
doi: 10.1007/s00526-002-0164-y. |
[8] |
Calc. Var. Partial Differential Equations, 35 (2009), 435-462.
doi: 10.1007/s00526-008-0214-1. |
[9] |
Arch. Ration. Mech. Anal., 197 (2010), 1053-1088.
doi: 10.1007/s00205-010-0307-9. |
[10] |
C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652.
doi: 10.1016/S0764-4442(97)84777-5. |
[11] |
C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046. |
[12] |
C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213-1216. |
[13] |
C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4. |
[14] |
Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328. |
[15] |
preprint, 2011. Google Scholar |
[16] |
Nonlinearity, 15 (2002), 581-603.
doi: 10.1088/0951-7715/15/3/304. |
[17] |
preprint, 2011. Google Scholar |
[18] |
Ph.D. Thesis, Université Paris Dauphine, Paris, 2009. Google Scholar |
[19] |
J. Math. Pures Appl. (9), 92 (2009), 276-294. |
[20] |
IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450. |
[21] |
Commun. Inf. Syst., 6 (2006), 221-251. |
[22] |
C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.
doi: 10.1016/j.crma.2006.09.019. |
[23] |
C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[24] |
Jpn. J. Math., 2 (2007), 229-260. |
[25] |
Cahiers de la Chaire Finance et Développement Durable, 2007. |
[26] |
preprint, 2010. Google Scholar |
[27] |
in "Paris-Princeton Lectures on Mathematical Finance 2010," Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266. |
[28] |
Math. Z, 207 (1991), 169-207.
doi: 10.1007/BF02571383. |
[29] |
Nonlinearity, 5 (1992), 623-638. |
[30] |
Commun. Pure Appl. Anal., 7 (2008), 1211-1223. |
show all references
References:
[1] |
SIAM J. Numer. Anal., 48 (2010), 1136-1162.
doi: 10.1137/090758477. |
[2] |
Math. Models Methods Appl. Sci., 20 (2010), 567-588.
doi: 10.1142/S0218202510004349. |
[3] |
SIAM J. Control Opt., 50 (2012), 77-109.
doi: 10.1137/100790069. |
[4] |
F. Cagnetti, D. Gomes and H. V. Tran, Adjoint methods for obstacle problems and weakly coupled systems of PDE,, submitted., (). Google Scholar |
[5] |
F. Cagnetti, D. Gomes and H. V. Tran, Aubry-Mather measures in the non convex setting,, submitted., (). Google Scholar |
[6] |
Arch. Ration. Mech. Anal., 201 (2011), 87-113.
doi: 10.1007/s00205-011-0399-x. |
[7] |
Calc. Var. Partial Differential Equations, 17 (2003), 159-177.
doi: 10.1007/s00526-002-0164-y. |
[8] |
Calc. Var. Partial Differential Equations, 35 (2009), 435-462.
doi: 10.1007/s00526-008-0214-1. |
[9] |
Arch. Ration. Mech. Anal., 197 (2010), 1053-1088.
doi: 10.1007/s00205-010-0307-9. |
[10] |
C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 649-652.
doi: 10.1016/S0764-4442(97)84777-5. |
[11] |
C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 1043-1046. |
[12] |
C. R. Acad. Sci. Paris Sér. I Math., 326 (1998), 1213-1216. |
[13] |
C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), 267-270.
doi: 10.1016/S0764-4442(98)80144-4. |
[14] |
Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308-328. |
[15] |
preprint, 2011. Google Scholar |
[16] |
Nonlinearity, 15 (2002), 581-603.
doi: 10.1088/0951-7715/15/3/304. |
[17] |
preprint, 2011. Google Scholar |
[18] |
Ph.D. Thesis, Université Paris Dauphine, Paris, 2009. Google Scholar |
[19] |
J. Math. Pures Appl. (9), 92 (2009), 276-294. |
[20] |
IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450. |
[21] |
Commun. Inf. Syst., 6 (2006), 221-251. |
[22] |
C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.
doi: 10.1016/j.crma.2006.09.019. |
[23] |
C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018. |
[24] |
Jpn. J. Math., 2 (2007), 229-260. |
[25] |
Cahiers de la Chaire Finance et Développement Durable, 2007. |
[26] |
preprint, 2010. Google Scholar |
[27] |
in "Paris-Princeton Lectures on Mathematical Finance 2010," Lecture Notes in Math., 2003, Springer, Berlin, (2011), 205-266. |
[28] |
Math. Z, 207 (1991), 169-207.
doi: 10.1007/BF02571383. |
[29] |
Nonlinearity, 5 (1992), 623-638. |
[30] |
Commun. Pure Appl. Anal., 7 (2008), 1211-1223. |
[1] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[2] |
Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021006 |
[3] |
Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021050 |
[4] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021026 |
[5] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[6] |
Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045 |
[7] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[8] |
Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016 |
[9] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[10] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[11] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[12] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[13] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[14] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[15] |
René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021012 |
[16] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021011 |
[17] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[18] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
[19] |
İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021010 |
[20] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]