June  2012, 7(2): 315-336. doi: 10.3934/nhm.2012.7.315

New numerical methods for mean field games with quadratic costs

1. 

UFR de Math, Universit, 175, rue du Chevaleret, 75013 Paris, France

Received  November 2011 Revised  March 2012 Published  June 2012

Mean field games have been introduced by J.-M. Lasry and P.-L. Lions in [13, 14, 15] as the limit case of stochastic differential games when the number of players goes to $+\infty$. In the case of quadratic costs, we present two changes of variables that allow to transform the mean field games (MFG) equations into two simpler systems of equations. The first change of variables, introduced in [11], leads to two heat equations with nonlinear source terms. The second change of variables, which is introduced for the first time in this paper, leads to two Hamilton-Jacobi-Bellman equations. Numerical methods based on these equations are presented and numerical experiments are carried out.
Citation: Olivier Guéant. New numerical methods for mean field games with quadratic costs. Networks & Heterogeneous Media, 2012, 7 (2) : 315-336. doi: 10.3934/nhm.2012.7.315
References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM Journal on Numerical Analysis, 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[3]

P. Cardaliaguet, Notes on mean field games,, from P.-L. Lions' lectures at Collège de France, (2010).   Google Scholar

[4]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Mathematics of Computation, 43 (1984), 1.  doi: 10.1090/S0025-5718-1984-0744921-8.  Google Scholar

[5]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (2010).   Google Scholar

[6]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308.   Google Scholar

[7]

O. Guéant, Mean field games equations with quadratic hamiltonian: A specifc approach,, to appear in Mathematical Models and Methods in Applied Sciences (M3AS)., ().   Google Scholar

[8]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, to appear in the Annals of ISDG., ().   Google Scholar

[9]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D thesis, (2009).   Google Scholar

[10]

O. Guéant, A reference case for mean field games models,, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276.   Google Scholar

[11]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.   Google Scholar

[12]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[14]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[15]

J.-M. Lasry and P.-L. Lions, Mean field games,, Japanese Journal of Mathematics, 2 (2007), 229.   Google Scholar

[16]

P.-L. Lions, Théorie des jeux à champs moyens, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp}., ().   Google Scholar

show all references

References:
[1]

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Numerical methods for the planning problem,, SIAM J. Control Opt., 50 (2012), 77.  doi: 10.1137/100790069.  Google Scholar

[2]

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods,, SIAM Journal on Numerical Analysis, 48 (2010), 1136.  doi: 10.1137/090758477.  Google Scholar

[3]

P. Cardaliaguet, Notes on mean field games,, from P.-L. Lions' lectures at Collège de France, (2010).   Google Scholar

[4]

M. G. Crandall and P.-L. Lions, Two approximations of solutions of Hamilton-Jacobi equations,, Mathematics of Computation, 43 (1984), 1.  doi: 10.1090/S0025-5718-1984-0744921-8.  Google Scholar

[5]

L. C. Evans, "Partial Differential Equations,", Graduate Studies in Mathematics, (2010).   Google Scholar

[6]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games,, Journal de Mathématiques Pures et Appliquées (9), 93 (2010), 308.   Google Scholar

[7]

O. Guéant, Mean field games equations with quadratic hamiltonian: A specifc approach,, to appear in Mathematical Models and Methods in Applied Sciences (M3AS)., ().   Google Scholar

[8]

O. Guéant, Mean field games with quadratic hamiltonian: A constructive scheme,, to appear in the Annals of ISDG., ().   Google Scholar

[9]

O. Guéant, "Mean Field Games and Applications to Economics,", Ph.D thesis, (2009).   Google Scholar

[10]

O. Guéant, A reference case for mean field games models,, Journal de Mathématiques Pures et Appliquées (9), 92 (2009), 276.   Google Scholar

[11]

O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications,, in, 2003 (2011), 205.   Google Scholar

[12]

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics,, Mathematical Models and Methods in Applied Sciences, 20 (2010), 567.  doi: 10.1142/S0218202510004349.  Google Scholar

[13]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire,, C. R. Acad. Sci. Paris, 343 (2006), 619.  doi: 10.1016/j.crma.2006.09.019.  Google Scholar

[14]

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal,, C. R. Acad. Sci. Paris, 343 (2006), 679.  doi: 10.1016/j.crma.2006.09.018.  Google Scholar

[15]

J.-M. Lasry and P.-L. Lions, Mean field games,, Japanese Journal of Mathematics, 2 (2007), 229.   Google Scholar

[16]

P.-L. Lions, Théorie des jeux à champs moyens, Cours au Collège de France., Available from: \url{http://www.college-de-france.fr/default/EN/all/equ_der/audio_video.jsp}., ().   Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[3]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[4]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[5]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[7]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[8]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[9]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[10]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[14]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[15]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[19]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[20]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]