2012, 7(3): 525-541. doi: 10.3934/nhm.2012.7.525

On the signed porous medium flow

1. 

Département de Mathématiques, UMR 8628 Université Paris-Sud 11-CNRS, Bâtiment 425, Faculté des Sciences d'Orsay, Université Paris-Sud 11, F-91405 Orsay Cedex, France

Received  December 2011 Revised  July 2012 Published  October 2012

We prove that the signed porous medium equation can be regarded as limit of an optimal transport variational scheme, therefore extending the classical result for positive solutions of [13] and showing that an optimal transport approach is suited even for treating signed densities.
Citation: Edoardo Mainini. On the signed porous medium flow. Networks & Heterogeneous Media, 2012, 7 (3) : 525-541. doi: 10.3934/nhm.2012.7.525
References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).

[2]

L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 217.

[3]

D. G. Aronson, The porous medium equation,, in, (1986), 1.

[4]

M. Bertsch and D. Hilhorst, The interface between regions where $u<0$ and $u>0$ in the porous medium equation,, Appl. Anal., 41 (1991), 111.

[5]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Ration. Mech. Anal., 179 (2006), 217.

[6]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.

[7]

J. Hulshof, Similarity solutions of the porous medium equation with sign changes,, J. Math. Anal. Appl., 157 (1991), 75.

[8]

J. Hulshof, J. R. King and M. Bowen, Intermediate asymptotics of the porous medium equation with sign changes,, Adv. Differential Equations, 6 (2001), 1115.

[9]

J. Hulshof and J. L. Vázquez, The dipole solution for the porous medium equation in several space dimensions,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20 (1993), 193.

[10]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[11]

S. Kamin and J. L. Vázquez, Asymptotic behaviour of solutions of the porous medium equation with changing sign,, SIAM J. Math. Anal., 22 (1991), 34.

[12]

E. Mainini, A description of transport cost for signed measures,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390 (2011), 147.

[13]

F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory,, Arch. Rational Mech. Anal., 141 (1998), 63. doi: 10.1007/s002050050073.

[14]

F. Otto, Evolution of microstructure in unstable porous media flow: A relaxational approach,, Comm. Pure Appl. Math., 52 (1999), 873. doi: 10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T.

[15]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.

[16]

C. J. van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation $u_t=(|u|^{m-1} u_x)_x$ with $ m > -1 $,, IMA J. Appl. Math., 41 (1988), 147.

[17]

J. L. Vázquez, "The Porous Medium Equation,", Mathematical Theory, (2007).

[18]

J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space,, Dedicated to Philippe Bénilan. J. Evol. Equ., 3 (2003), 67.

[19]

J. L. Vázquez, New self-similar solutions of the porous medium equation and the theory of solutions of changing sign,, Nonlinear Anal., 15 (1990), 931.

[20]

C. Villani, "Optimal Transport, Old and New,", Springer-Verlag, (2008).

show all references

References:
[1]

L. Ambrosio, N. Gigli and G. Savaré, "Gradient Flows in Metric Spaces and in the Spaces of Probability Measures,", Lectures in Mathematics ETH Zürich, (2005).

[2]

L. Ambrosio, E. Mainini and S. Serfaty, Gradient flow of the Chapman-Rubinstein-Schatzman model for signed vortices,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 217.

[3]

D. G. Aronson, The porous medium equation,, in, (1986), 1.

[4]

M. Bertsch and D. Hilhorst, The interface between regions where $u<0$ and $u>0$ in the porous medium equation,, Appl. Anal., 41 (1991), 111.

[5]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media,, Arch. Ration. Mech. Anal., 179 (2006), 217.

[6]

A. Friedman and S. Kamin, The asymptotic behavior of gas in an n-dimensional porous medium,, Trans. Amer. Math. Soc., 262 (1980), 551.

[7]

J. Hulshof, Similarity solutions of the porous medium equation with sign changes,, J. Math. Anal. Appl., 157 (1991), 75.

[8]

J. Hulshof, J. R. King and M. Bowen, Intermediate asymptotics of the porous medium equation with sign changes,, Adv. Differential Equations, 6 (2001), 1115.

[9]

J. Hulshof and J. L. Vázquez, The dipole solution for the porous medium equation in several space dimensions,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 20 (1993), 193.

[10]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation,, SIAM J. Math. Anal., 29 (1998), 1. doi: 10.1137/S0036141096303359.

[11]

S. Kamin and J. L. Vázquez, Asymptotic behaviour of solutions of the porous medium equation with changing sign,, SIAM J. Math. Anal., 22 (1991), 34.

[12]

E. Mainini, A description of transport cost for signed measures,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 390 (2011), 147.

[13]

F. Otto, Dynamics of labyrinthine pattern formation in magnetic fluids: A mean-field theory,, Arch. Rational Mech. Anal., 141 (1998), 63. doi: 10.1007/s002050050073.

[14]

F. Otto, Evolution of microstructure in unstable porous media flow: A relaxational approach,, Comm. Pure Appl. Math., 52 (1999), 873. doi: 10.1002/(SICI)1097-0312(199907)52:7<873::AID-CPA5>3.0.CO;2-T.

[15]

F. Otto, The geometry of dissipative evolution equations: the porous medium equation,, Comm. Partial Differential Equations, 26 (2001), 101.

[16]

C. J. van Duijn, S. M. Gomes and H. F. Zhang, On a class of similarity solutions of the equation $u_t=(|u|^{m-1} u_x)_x$ with $ m > -1 $,, IMA J. Appl. Math., 41 (1988), 147.

[17]

J. L. Vázquez, "The Porous Medium Equation,", Mathematical Theory, (2007).

[18]

J. L. Vázquez, Asymptotic beahviour for the porous medium equation posed in the whole space,, Dedicated to Philippe Bénilan. J. Evol. Equ., 3 (2003), 67.

[19]

J. L. Vázquez, New self-similar solutions of the porous medium equation and the theory of solutions of changing sign,, Nonlinear Anal., 15 (1990), 931.

[20]

C. Villani, "Optimal Transport, Old and New,", Springer-Verlag, (2008).

[1]

A. El Hamidi. Multiple solutions with changing sign energy to a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 253-265. doi: 10.3934/cpaa.2004.3.253

[2]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[3]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[4]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[5]

Qinglan Xia. An application of optimal transport paths to urban transport networks. Conference Publications, 2005, 2005 (Special) : 904-910. doi: 10.3934/proc.2005.2005.904

[6]

Mohammad Asadzadeh, Anders Brahme, Jiping Xin. Galerkin methods for primary ion transport in inhomogeneous media. Kinetic & Related Models, 2010, 3 (3) : 373-394. doi: 10.3934/krm.2010.3.373

[7]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[8]

Wilfrid Gangbo, Andrzej Świech. Optimal transport and large number of particles. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1397-1441. doi: 10.3934/dcds.2014.34.1397

[9]

Roman Romanov. Estimates of solutions of linear neutron transport equation at large time and spectral singularities. Kinetic & Related Models, 2012, 5 (1) : 113-128. doi: 10.3934/krm.2012.5.113

[10]

Cedric Galusinski, Mazen Saad. Water-gas flow in porous media. Conference Publications, 2005, 2005 (Special) : 307-316. doi: 10.3934/proc.2005.2005.307

[11]

Daniela Giachetti, Francesco Petitta, Sergio Segura de León. Elliptic equations having a singular quadratic gradient term and a changing sign datum. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1875-1895. doi: 10.3934/cpaa.2012.11.1875

[12]

Shifeng Geng, Lina Zhang. Large-time behavior of solutions for the system of compressible adiabatic flow through porous media with nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2211-2228. doi: 10.3934/cpaa.2014.13.2211

[13]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[14]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[15]

Mary Luz Mouronte, Rosa María Benito. Structural analysis and traffic flow in the transport networks of Madrid. Networks & Heterogeneous Media, 2015, 10 (1) : 127-148. doi: 10.3934/nhm.2015.10.127

[16]

Stephen McDowall, Plamen Stefanov, Alexandru Tamasan. Gauge equivalence in stationary radiative transport through media with varying index of refraction. Inverse Problems & Imaging, 2010, 4 (1) : 151-167. doi: 10.3934/ipi.2010.4.151

[17]

Atul Kumar, R. R. Yadav. Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457-466. doi: 10.3934/proc.2013.2013.457

[18]

Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605

[19]

Paul Pegon, Filippo Santambrogio, Davide Piazzoli. Full characterization of optimal transport plans for concave costs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6113-6132. doi: 10.3934/dcds.2015.35.6113

[20]

Brendan Pass. Multi-marginal optimal transport and multi-agent matching problems: Uniqueness and structure of solutions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1623-1639. doi: 10.3934/dcds.2014.34.1623

2016 Impact Factor: 1.2

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]