2013, 8(1): 191-209. doi: 10.3934/nhm.2013.8.191

Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems

1. 

Institute of Mathematics for Industry, Kyusyu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395

2. 

Opinion Poll Research Center, The Asahi Shimbun Company, Tokyo 104-8011, Japan

Received  February 2012 Revised  January 2013 Published  April 2013

We consider pulse-like localized solutions for reaction-diffusion systems on a half line and impose various boundary conditions at one end of it. It is shown that the movement of a pulse solution with the homogeneous Neumann boundary condition is completely opposite from that with the Dirichlet boundary condition. As general cases, Robin type boundary conditions are also considered. Introducing one parameter connecting the Neumann and the Dirichlet boundary conditions, we clarify the transition of motions of solutions with respect to boundary conditions.
Citation: Shin-Ichiro Ei, Toshio Ishimoto. Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks & Heterogeneous Media, 2013, 8 (1) : 191-209. doi: 10.3934/nhm.2013.8.191
References:
[1]

J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t = epsilon^2 u_{x x} + f(u)$,, Comm. Pure Appl. Math., 42 (1989), 523. doi: 10.1002/cpa.3160420502.

[2]

A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model,, Physica D, 122 (1998), 1. doi: 10.1016/S0167-2789(98)00180-8.

[3]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems,, J. Dynam. Differential Equations, 14 (2002), 85. doi: 10.1023/A:1012980128575.

[4]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.

[5]

G. Fusco and J. Hale, Slow motion manifold, dormant instability and singular perturbations,, J. Dynamics and Differential Equations, 1 (1989), 75. doi: 10.1007/BF01048791.

[6]

K. Kawasaki and T. Ohta, Kink dynamics in one-dimensional nonlinear systems,, Physica A, 116 (1982), 573. doi: 10.1016/0378-4371(82)90178-9.

[7]

J. M. Murray, "Mathematical Biology,", Springer-Verlag, (1989).

[8]

Y. Nishiura, "Far-From-Equilibrium Dynamics,", (Translations of Mathematical Monographs), (2002).

show all references

References:
[1]

J. Carr and R. L. Pego, Metastable patterns in solutions of $u_t = epsilon^2 u_{x x} + f(u)$,, Comm. Pure Appl. Math., 42 (1989), 523. doi: 10.1002/cpa.3160420502.

[2]

A. Doelman, R. A. Gardner and T. J. Kaper, Stability analysis of singular patterns in the 1-D Gray-Scott model,, Physica D, 122 (1998), 1. doi: 10.1016/S0167-2789(98)00180-8.

[3]

S.-I. Ei, The motion of weakly interacting pulses in reaction-diffusion systems,, J. Dynam. Differential Equations, 14 (2002), 85. doi: 10.1023/A:1012980128575.

[4]

P. C. Fife and J. B. Mcleod, The approach of solutions of nonlinear diffusion equations to travelling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.

[5]

G. Fusco and J. Hale, Slow motion manifold, dormant instability and singular perturbations,, J. Dynamics and Differential Equations, 1 (1989), 75. doi: 10.1007/BF01048791.

[6]

K. Kawasaki and T. Ohta, Kink dynamics in one-dimensional nonlinear systems,, Physica A, 116 (1982), 573. doi: 10.1016/0378-4371(82)90178-9.

[7]

J. M. Murray, "Mathematical Biology,", Springer-Verlag, (1989).

[8]

Y. Nishiura, "Far-From-Equilibrium Dynamics,", (Translations of Mathematical Monographs), (2002).

[1]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[2]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[3]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regular solutions and global attractors for reaction-diffusion systems without uniqueness. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1891-1906. doi: 10.3934/cpaa.2014.13.1891

[4]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[5]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[6]

Luisa Malaguti, Cristina Marcelli, Serena Matucci. Continuous dependence in front propagation of convective reaction-diffusion equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1083-1098. doi: 10.3934/cpaa.2010.9.1083

[7]

Klemens Fellner, Evangelos Latos, Takashi Suzuki. Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3441-3462. doi: 10.3934/dcdsb.2016106

[8]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[9]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[10]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[11]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[12]

Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reaction-diffusion system applied to image denoising. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1839-1858. doi: 10.3934/dcdsb.2016025

[13]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[14]

Peter Poláčik, Eiji Yanagida. Stable subharmonic solutions of reaction-diffusion equations on an arbitrary domain. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 209-218. doi: 10.3934/dcds.2002.8.209

[15]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[16]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[17]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[18]

Yuri Latushkin, Roland Schnaubelt, Xinyao Yang. Stable foliations near a traveling front for reaction diffusion systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3145-3165. doi: 10.3934/dcdsb.2017168

[19]

Thomas I. Seidman. Interface conditions for a singular reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 631-643. doi: 10.3934/dcdss.2009.2.631

[20]

Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304

2016 Impact Factor: 1.2

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]