2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23

Reaction-diffusion waves with nonlinear boundary conditions

1. 

Department of Mathematics, "Gheorghe Asachi" Technical University, Bd. Carol. I, 700506 Iasi, Romania

2. 

Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France

Received  January 2012 Revised  July 2012 Published  April 2013

A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method.
Citation: Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23
References:
[1]

A. Fabiato, Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum,, Am. J. Physiol. Cell. Physiol., 245 (1983), 1. doi: 10.1016/0022-2828(92)90114-F.

[2]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).

[3]

N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development,, J. Math. Biol., 65 (2012), 349. doi: 10.1007/s00285-011-0461-1.

[4]

M. Kyed, Existence of travelling wave solutions for the heat equation in infinite cylinders with a nonlinear boundary condition,, Math. Nachr., 281 (2008), 253. doi: 10.1002/mana.200710599.

[5]

A. Volpert, Vit. Volpert and Vl. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).

[6]

V. Volpert and A. Volpert, Spectrum of elliptic operators and stability of travelling waves,, Asymptotic Analysis, 23 (2000), 111.

[7]

V. Volpert, "Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains,", Birkhäuser, (2011). doi: 10.1007/978-3-0346-0537-3.

show all references

References:
[1]

A. Fabiato, Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum,, Am. J. Physiol. Cell. Physiol., 245 (1983), 1. doi: 10.1016/0022-2828(92)90114-F.

[2]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).

[3]

N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development,, J. Math. Biol., 65 (2012), 349. doi: 10.1007/s00285-011-0461-1.

[4]

M. Kyed, Existence of travelling wave solutions for the heat equation in infinite cylinders with a nonlinear boundary condition,, Math. Nachr., 281 (2008), 253. doi: 10.1002/mana.200710599.

[5]

A. Volpert, Vit. Volpert and Vl. Volpert, "Traveling Wave Solutions of Parabolic Systems,", Translation of Mathematical Monographs, 140 (1994).

[6]

V. Volpert and A. Volpert, Spectrum of elliptic operators and stability of travelling waves,, Asymptotic Analysis, 23 (2000), 111.

[7]

V. Volpert, "Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains,", Birkhäuser, (2011). doi: 10.1007/978-3-0346-0537-3.

[1]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear Neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[2]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[3]

Daniel Franco, Donal O'Regan. Existence of solutions to second order problems with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 273-280. doi: 10.3934/proc.2003.2003.273

[4]

Boumediene Abdellaoui, Daniela Giachetti, Ireneo Peral, Magdalena Walias. Elliptic problems with nonlinear terms depending on the gradient and singular on the boundary: Interaction with a Hardy-Leray potential. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1747-1774. doi: 10.3934/dcds.2014.34.1747

[5]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[6]

Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129

[7]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[8]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems & Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[9]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[10]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[11]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions . Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[12]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[13]

Matthew H. Chan, Peter S. Kim, Robert Marangell. Stability of travelling waves in a Wolbachia invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 609-628. doi: 10.3934/dcdsb.2018036

[14]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[15]

Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1

[16]

Frederic Rousset. The residual boundary conditions coming from the real vanishing viscosity method. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 605-625. doi: 10.3934/dcds.2002.8.606

[17]

Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789

[18]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[19]

B. Abdellaoui, E. Colorado, I. Peral. Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2006, 5 (1) : 29-54. doi: 10.3934/cpaa.2006.5.29

[20]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

2016 Impact Factor: 1.2

Metrics

  • PDF downloads (0)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]