
Previous Article
Gammaexpansion for a 1D confined LennardJones model with point defect
 NHM Home
 This Issue

Next Article
Homogenization of hexagonal lattices
The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points
1.  EPFL, I&C, CH1015 Lausanne, Switzerland 
References:
[1] 
M. Benaïm, Recursive algorithms, urn processes and chaining number of chain recurrent sets,, Ergodic Theory and Dynamical System, 18 (1998), 53. doi: 10.1017/S0143385798097557. 
[2] 
M. Benaïm and J.Y. Le Boudec, A class of mean field interaction models for computer and communication systems,, Performance Evaluation, 65 (2008), 823. 
[3] 
M. Benaïm and J. Weibull, Deterministic approximation of stochastic evolution,, Econometrica, 71 (2003), 873. doi: 10.1111/14680262.00429. 
[4] 
M. Benaïm, Dynamics of stochastic approximation algorithms,, in, 1709 (1999), 1. doi: 10.1007/BFb0096509. 
[5] 
G. Bianchi, IEEE 802.11Saturation throughput analysis,, IEEE Communications Letters, 2 (1998), 318. doi: 10.1109/4234.736171. 
[6] 
C. Bordenave, D. McDonald and A. Proutière, A particle system in interaction with a rapidly varying environment: Mean field limits and applications,, Networks and Heterogeneous Media, 5 (2010), 31. doi: 10.3934/nhm.2010.5.31. 
[7] 
J. A. M Borghans, R. J. De Boer, E. Sercarz and V. Kumar, T cell vaccination in experimental autoimmune encephalomyelitis: A mathematical model,, The Journal of Immunology, 161 (1998), 1087. 
[8] 
L. Bortolussi, J.Y. Le Boudec, D. Latella and M. Massink, Revisiting the limit behaviour of "El Botellon,", Technical Report EPFLREPORT179935, (2012). 
[9] 
V. Capasso and D. Bakstein, "An Introduction to ContinuousTime Markov Processes. Theory, Models, and Applications to Finance, Biology, and Medicine,", Modeling and Simulation in Science, (2005). 
[10] 
J.W. Cho, J.Y. Le Boudec and Y. Jiang, On the asymptotic validity of the fixed point equation and decoupling assumption for analyzing the 802.11 MAC protocol,, IEEE Transactions on Information Theory, 58 (2012), 6879. doi: 10.1109/TIT.2012.2208582. 
[11] 
J.P. Crametz and P. J. Hunt, A limit result respecting graph structure for a fully connected loss network with alternative routing,, The Annals of Applied Probability, 1 (1991), 436. doi: 10.1214/aoap/1177005876. 
[12] 
S. N. Ethier and T. G. Kurtz, "Markov Processes. Characterization and Convergence,", Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, (1986). doi: 10.1002/9780470316658. 
[13] 
C. Graham and S. Méléard, Propagation of chaos for a fully connected loss network with alternate routing,, Stochastic Processes and Their Applications, 44 (1993), 159. doi: 10.1016/03044149(93)900434. 
[14] 
F. P. Kelly, "Reversibility and Stochastic Networks,", Wiley Series in Probability and Mathematical Statistics, (1979). 
[15] 
F. P. Kelly, Loss networks,, The Annals of Applied Probability, 1 (1991), 319. doi: 10.1214/aoap/1177005872. 
[16] 
A. Kumar, E. Altman, D. Miorandi and M. Goyal, New insights from a fixedpoint analysis of single cell ieee 802.11 wlans,, IEEE/ACM Transactions on Networking, 15 (2007), 588. 
[17] 
T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes,, Journal of Applied Probability, 7 (1979), 49. doi: 10.2307/3212147. 
[18] 
Thomas G. Kurtz, "Approximation of Population Processes,", CBMSNSF Regional Conference Series in Applied Mathematics, 36 (1981). 
[19] 
J.Y. Le Boudec, D. McDonald and J. Mundinger, A generic mean field convergence result for systems of interacting objects,, in, (2007), 3. doi: 10.1109/QEST.2007.8. 
[20] 
J.Y. Le Boudec, "Performance Evaluation of Computer and Communication Systems,", EPFL Press, (2010). 
[21] 
J.Y. Le Boudec, Interinput and interoutput time distribution in classical productform networks,, IEEE Transactions on Software Engineering, 6 (1987), 756. 
[22] 
M. Massink, D. Latella, A. Bracciali and J. Hillston, Modelling nonlinear crowd dynamics in bioPEPA,, in, 6603 (2011), 96. doi: 10.1007/9783642198113_8. 
[23] 
R. Merz, J.Y. Le Boudec and S. Vijayakumaran, Effect on network performance of common versus private acquisition sequences for impulse radio UWB networks,, in, (2006), 375. doi: 10.1109/ICU.2006.281579. 
[24] 
J. E. Rowe and R. Gomez, El Botellón: Modeling the movement of crowds in a city,, Complex Systems, 14 (2003), 363. 
[25] 
W. H. Sandholm, "Population Games and Evolutionary Dynamics,", Economic Learning and Social Evolution, (2010). 
show all references
References:
[1] 
M. Benaïm, Recursive algorithms, urn processes and chaining number of chain recurrent sets,, Ergodic Theory and Dynamical System, 18 (1998), 53. doi: 10.1017/S0143385798097557. 
[2] 
M. Benaïm and J.Y. Le Boudec, A class of mean field interaction models for computer and communication systems,, Performance Evaluation, 65 (2008), 823. 
[3] 
M. Benaïm and J. Weibull, Deterministic approximation of stochastic evolution,, Econometrica, 71 (2003), 873. doi: 10.1111/14680262.00429. 
[4] 
M. Benaïm, Dynamics of stochastic approximation algorithms,, in, 1709 (1999), 1. doi: 10.1007/BFb0096509. 
[5] 
G. Bianchi, IEEE 802.11Saturation throughput analysis,, IEEE Communications Letters, 2 (1998), 318. doi: 10.1109/4234.736171. 
[6] 
C. Bordenave, D. McDonald and A. Proutière, A particle system in interaction with a rapidly varying environment: Mean field limits and applications,, Networks and Heterogeneous Media, 5 (2010), 31. doi: 10.3934/nhm.2010.5.31. 
[7] 
J. A. M Borghans, R. J. De Boer, E. Sercarz and V. Kumar, T cell vaccination in experimental autoimmune encephalomyelitis: A mathematical model,, The Journal of Immunology, 161 (1998), 1087. 
[8] 
L. Bortolussi, J.Y. Le Boudec, D. Latella and M. Massink, Revisiting the limit behaviour of "El Botellon,", Technical Report EPFLREPORT179935, (2012). 
[9] 
V. Capasso and D. Bakstein, "An Introduction to ContinuousTime Markov Processes. Theory, Models, and Applications to Finance, Biology, and Medicine,", Modeling and Simulation in Science, (2005). 
[10] 
J.W. Cho, J.Y. Le Boudec and Y. Jiang, On the asymptotic validity of the fixed point equation and decoupling assumption for analyzing the 802.11 MAC protocol,, IEEE Transactions on Information Theory, 58 (2012), 6879. doi: 10.1109/TIT.2012.2208582. 
[11] 
J.P. Crametz and P. J. Hunt, A limit result respecting graph structure for a fully connected loss network with alternative routing,, The Annals of Applied Probability, 1 (1991), 436. doi: 10.1214/aoap/1177005876. 
[12] 
S. N. Ethier and T. G. Kurtz, "Markov Processes. Characterization and Convergence,", Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, (1986). doi: 10.1002/9780470316658. 
[13] 
C. Graham and S. Méléard, Propagation of chaos for a fully connected loss network with alternate routing,, Stochastic Processes and Their Applications, 44 (1993), 159. doi: 10.1016/03044149(93)900434. 
[14] 
F. P. Kelly, "Reversibility and Stochastic Networks,", Wiley Series in Probability and Mathematical Statistics, (1979). 
[15] 
F. P. Kelly, Loss networks,, The Annals of Applied Probability, 1 (1991), 319. doi: 10.1214/aoap/1177005872. 
[16] 
A. Kumar, E. Altman, D. Miorandi and M. Goyal, New insights from a fixedpoint analysis of single cell ieee 802.11 wlans,, IEEE/ACM Transactions on Networking, 15 (2007), 588. 
[17] 
T. G. Kurtz, Solutions of ordinary differential equations as limits of pure jump Markov processes,, Journal of Applied Probability, 7 (1979), 49. doi: 10.2307/3212147. 
[18] 
Thomas G. Kurtz, "Approximation of Population Processes,", CBMSNSF Regional Conference Series in Applied Mathematics, 36 (1981). 
[19] 
J.Y. Le Boudec, D. McDonald and J. Mundinger, A generic mean field convergence result for systems of interacting objects,, in, (2007), 3. doi: 10.1109/QEST.2007.8. 
[20] 
J.Y. Le Boudec, "Performance Evaluation of Computer and Communication Systems,", EPFL Press, (2010). 
[21] 
J.Y. Le Boudec, Interinput and interoutput time distribution in classical productform networks,, IEEE Transactions on Software Engineering, 6 (1987), 756. 
[22] 
M. Massink, D. Latella, A. Bracciali and J. Hillston, Modelling nonlinear crowd dynamics in bioPEPA,, in, 6603 (2011), 96. doi: 10.1007/9783642198113_8. 
[23] 
R. Merz, J.Y. Le Boudec and S. Vijayakumaran, Effect on network performance of common versus private acquisition sequences for impulse radio UWB networks,, in, (2006), 375. doi: 10.1109/ICU.2006.281579. 
[24] 
J. E. Rowe and R. Gomez, El Botellón: Modeling the movement of crowds in a city,, Complex Systems, 14 (2003), 363. 
[25] 
W. H. Sandholm, "Population Games and Evolutionary Dynamics,", Economic Learning and Social Evolution, (2010). 
[1] 
Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems  B, 2016, 21 (9) : 30293052. doi: 10.3934/dcdsb.2016086 
[2] 
Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568572. doi: 10.3934/proc.2007.2007.568 
[3] 
John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443464. doi: 10.3934/jmd.2007.1.443 
[4] 
Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete & Continuous Dynamical Systems  A, 2014, 34 (9) : 37613772. doi: 10.3934/dcds.2014.34.3761 
[5] 
Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in meanfield limit. Kinetic & Related Models, 2011, 4 (1) : 385399. doi: 10.3934/krm.2011.4.385 
[6] 
SeungYeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and meanfield limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297322. doi: 10.3934/nhm.2018013 
[7] 
Michael Herty, Mattia Zanella. Performance bounds for the meanfield limit of constrained dynamics. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 20232043. doi: 10.3934/dcds.2017086 
[8] 
Juan Pablo Maldonado López. Discrete time mean field games: The shortstage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89101. doi: 10.3934/jdg.2015.2.89 
[9] 
Franco Flandoli, Marta Leocata, Cristiano Ricci. The VlasovNavierStokes equations as a mean field limit. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 113. doi: 10.3934/dcdsb.2018313 
[10] 
Grzegorz Siudem, Grzegorz Świątek. Diagonal stationary points of the bethe functional. Discrete & Continuous Dynamical Systems  A, 2017, 37 (5) : 27172743. doi: 10.3934/dcds.2017117 
[11] 
Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems  B, 2008, 9 (3&4, May) : 517523. doi: 10.3934/dcdsb.2008.9.517 
[12] 
Fanghua Lin, Ping Zhang. On the hydrodynamic limit of GinzburgLandau vortices. Discrete & Continuous Dynamical Systems  A, 2000, 6 (1) : 121142. doi: 10.3934/dcds.2000.6.121 
[13] 
Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems  A, 1998, 4 (1) : 141158. doi: 10.3934/dcds.1998.4.141 
[14] 
Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 19171936. doi: 10.3934/dcdsb.2016029 
[15] 
SeungYeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the CuckerSmale model and its application to the MeanField limit. Kinetic & Related Models, 2018, 11 (5) : 11571181. doi: 10.3934/krm.2018045 
[16] 
Kazuhisa Ichikawa, Mahemauti Rouzimaimaiti, Takashi Suzuki. Reaction diffusion equation with nonlocal term arises as a mean field limit of the master equation. Discrete & Continuous Dynamical Systems  S, 2012, 5 (1) : 115126. doi: 10.3934/dcdss.2012.5.115 
[17] 
Rong Yang, Li Chen. Meanfield limit for a collisionavoiding flocking system and the timeasymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381400. doi: 10.3934/krm.2014.7.381 
[18] 
YoungPil Choi, Samir Salem. CuckerSmale flocking particles with multiplicative noises: Stochastic meanfield limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573592. doi: 10.3934/krm.2019023 
[19] 
Victoria MartínMárquez, Simeon Reich, Shoham Sabach. Iterative methods for approximating fixed points of Bregman nonexpansive operators. Discrete & Continuous Dynamical Systems  S, 2013, 6 (4) : 10431063. doi: 10.3934/dcdss.2013.6.1043 
[20] 
Rich Stankewitz. Density of repelling fixed points in the Julia set of a rational or entire semigroup, II. Discrete & Continuous Dynamical Systems  A, 2012, 32 (7) : 25832589. doi: 10.3934/dcds.2012.32.2583 
2018 Impact Factor: 0.871
Tools
Metrics
Other articles
by authors
[Back to Top]