# American Institute of Mathematical Sciences

June  2013, 8(2): 529-540. doi: 10.3934/nhm.2013.8.529

## The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points

 1 EPFL, I&C, CH-1015 Lausanne, Switzerland

Received  July 2012 Revised  October 2012 Published  May 2013

Assume that a stochastic process can be approximated, when some scale parameter gets large, by a fluid limit (also called "mean field limit", or "hydrodynamic limit"). A common practice, often called the "fixed point approximation" consists in approximating the stationary behaviour of the stochastic process by the stationary points of the fluid limit. It is known that this may be incorrect in general, as the stationary behaviour of the fluid limit may not be described by its stationary points. We show however that, if the stochastic process is reversible, the fixed point approximation is indeed valid. More precisely, we assume that the stochastic process converges to the fluid limit in distribution (hence in probability) at every fixed point in time. This assumption is very weak and holds for a large family of processes, among which many mean field and other interaction models. We show that the reversibility of the stochastic process implies that any limit point of its stationary distribution is concentrated on stationary points of the fluid limit. If the fluid limit has a unique stationary point, it is an approximation of the stationary distribution of the stochastic process.
Citation: Jean-Yves Le Boudec. The stationary behaviour of fluid limits of reversible processes is concentrated on stationary points. Networks & Heterogeneous Media, 2013, 8 (2) : 529-540. doi: 10.3934/nhm.2013.8.529
##### References:

show all references

##### References:
 [1] Franco Flandoli, Matti Leimbach. Mean field limit with proliferation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3029-3052. doi: 10.3934/dcdsb.2016086 [2] Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568 [3] John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443 [4] Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011 [5] Roberto Natalini, Thierry Paul. On the mean field limit for Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021164 [6] Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761 [7] Grzegorz Siudem, Grzegorz Świątek. Diagonal stationary points of the bethe functional. Discrete & Continuous Dynamical Systems, 2017, 37 (5) : 2717-2743. doi: 10.3934/dcds.2017117 [8] Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313 [9] Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385 [10] Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013 [11] Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086 [12] Juan Pablo Maldonado López. Discrete time mean field games: The short-stage limit. Journal of Dynamics & Games, 2015, 2 (1) : 89-101. doi: 10.3934/jdg.2015.2.89 [13] Theresa Lange, Wilhelm Stannat. Mean field limit of Ensemble Square Root filters - discrete and continuous time. Foundations of Data Science, 2021, 3 (3) : 563-588. doi: 10.3934/fods.2021003 [14] Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517 [15] Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001 [16] Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141 [17] José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks & Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023 [18] Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121 [19] Dieter Schmidt, Lucas Valeriano. Nonlinear stability of stationary points in the problem of Robe. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1917-1936. doi: 10.3934/dcdsb.2016029 [20] Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

2020 Impact Factor: 1.213