June  2013, 8(2): 573-589. doi: 10.3934/nhm.2013.8.573

Asymptotics of an optimal compliance-network problem

1. 

International Centre for Theoretical Physics, Strada Costiera,11, I - 34151 Trieste, Italy

Received  October 2012 Revised  March 2013 Published  May 2013

We consider the problem of the optimal location of a Dirichlet region in a $d$-dimensional domain $\Omega$ subjected to a given force $f$ in order to minimize the $p$-compliance of the configuration. We look for the optimal region among the class of all closed connected sets of assigned length $l.$ Then we let the length $l$ tend to infinity and we look at the $\Gamma$-limit of a suitable rescaled functional, from which we get information of the asymptotic distribution of the optimal region. We also study the case where the Dirichlet region is a discrete set of finite cardinality.
Citation: Al-hassem Nayam. Asymptotics of an optimal compliance-network problem. Networks & Heterogeneous Media, 2013, 8 (2) : 573-589. doi: 10.3934/nhm.2013.8.573
References:
[1]

G. Allaire, "Shape Optimization by the Homogenization Method,", Applied Mathematical Sciences, 146 (2002). Google Scholar

[2]

G. Bouchité, C.Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal,, C. R. Acad. Sci. Paris Sér. I, 335 (2002), 1. Google Scholar

[3]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems,", Progress in Nonlinear Differential Equation and their Applications, 65 (2005). Google Scholar

[4]

D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 945. doi: 10.1017/S0308210500030006. Google Scholar

[5]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Networks and Heterogeneous Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761. Google Scholar

[6]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752. doi: 10.1051/cocv:2006020. Google Scholar

[7]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[8]

G. Dal Maso and F. Murat, Asymptotic behavior and corrector for the Dirichlet problem in perforated domains with homogeneous monotone operators,, Ann. Sc. Norm. Sup. Pisa Cl. Sci Ser. (4), 24 (1997), 239. Google Scholar

[9]

V. G. Maz'ja, "Sobolev Spaces,", Springer Series in Soviet Mathematics, (1985). Google Scholar

[10]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem,, J. Conv. Anal., 12 (2005), 145. Google Scholar

[11]

V. Šverak, On optimal shape design,, J. Math. Pures Appl. (9), 72 (1993), 537. Google Scholar

show all references

References:
[1]

G. Allaire, "Shape Optimization by the Homogenization Method,", Applied Mathematical Sciences, 146 (2002). Google Scholar

[2]

G. Bouchité, C.Jimenez and M. Rajesh, Asymptotique d'un problème de positionnement optimal,, C. R. Acad. Sci. Paris Sér. I, 335 (2002), 1. Google Scholar

[3]

D. Bucur and G. Buttazzo, "Variational Methods in Shape Optimization Problems,", Progress in Nonlinear Differential Equation and their Applications, 65 (2005). Google Scholar

[4]

D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations,, Proc. Roy. Soc. Edinburgh Sect. A, 128 (1998), 945. doi: 10.1017/S0308210500030006. Google Scholar

[5]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Networks and Heterogeneous Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761. Google Scholar

[6]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752. doi: 10.1051/cocv:2006020. Google Scholar

[7]

G. Dal Maso, "An Introduction to $\Gamma$-Convergence,", Progress in Nonlinear Differential Equations and their Applications, 8 (1993). doi: 10.1007/978-1-4612-0327-8. Google Scholar

[8]

G. Dal Maso and F. Murat, Asymptotic behavior and corrector for the Dirichlet problem in perforated domains with homogeneous monotone operators,, Ann. Sc. Norm. Sup. Pisa Cl. Sci Ser. (4), 24 (1997), 239. Google Scholar

[9]

V. G. Maz'ja, "Sobolev Spaces,", Springer Series in Soviet Mathematics, (1985). Google Scholar

[10]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem,, J. Conv. Anal., 12 (2005), 145. Google Scholar

[11]

V. Šverak, On optimal shape design,, J. Math. Pures Appl. (9), 72 (1993), 537. Google Scholar

[1]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[2]

Giuseppe Buttazzo, Filippo Santambrogio. Asymptotical compliance optimization for connected networks. Networks & Heterogeneous Media, 2007, 2 (4) : 761-777. doi: 10.3934/nhm.2007.2.761

[3]

Paolo Tilli. Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length. Networks & Heterogeneous Media, 2012, 7 (1) : 127-136. doi: 10.3934/nhm.2012.7.127

[4]

Al-hassem Nayam. Constant in two-dimensional $p$-compliance-network problem. Networks & Heterogeneous Media, 2014, 9 (1) : 161-168. doi: 10.3934/nhm.2014.9.161

[5]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[6]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[7]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[8]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[9]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[10]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[11]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[12]

Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations & Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010

[13]

Chunlei Zhang, Qin Sheng, Raúl Ordóñez. Notes on the convergence and applications of surrogate optimization. Conference Publications, 2005, 2005 (Special) : 947-956. doi: 10.3934/proc.2005.2005.947

[14]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[15]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[16]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[17]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[18]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[19]

King Hann Lim, Hong Hui Tan, Hendra G. Harno. Approximate greatest descent in neural network optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 327-336. doi: 10.3934/naco.2018021

[20]

Yi-Kuei Lin, Cheng-Ta Yeh. Reliability optimization of component assignment problem for a multistate network in terms of minimal cuts. Journal of Industrial & Management Optimization, 2011, 7 (1) : 211-227. doi: 10.3934/jimo.2011.7.211

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]