2013, 8(3): 663-684. doi: 10.3934/nhm.2013.8.663

A dynamical two-dimensional traffic model in an anisotropic network

1. 

Université Paris Est, GRETTIA, Ifsttar, 14-20 boulevard Newton, Cité Descartes Champs sur Marne, 77447 Marne la Vallée Cedex 2, France

2. 

Ifsttar, COSYS-GRETTIA, 14-20 boulevard Newton, Cité Descartes Champs sur Marne, 77447 Marne la Vallée Cedex 2, France

Received  August 2012 Revised  July 2013 Published  October 2013

The aim of this paper is to build a dynamical traffic model in a dense urban area. The main contribution of this article is to take into account the four possible directions of traffic flows with flow vectors of dimension $4$ and not $2$ as in fluid mechanic on a plan. Traffic flows are viewed as confrontation results between users demands and a travel supply of the network. The model gathers elements of intersection theory and two-dimensional continuum networks.
Citation: Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem. A dynamical two-dimensional traffic model in an anisotropic network. Networks & Heterogeneous Media, 2013, 8 (3) : 663-684. doi: 10.3934/nhm.2013.8.663
References:
[1]

Jean-Bernard Baillon and Guillaume Carlier, From discrete to continuous Wardrop equilibria,, Networks and Heterogeneous Media, 7 (2012), 219. doi: 10.3934/nhm.2012.7.219.

[2]

Giuseppe Maria Coclite and Benedetto Piccoli, "Traffic Flow on a Road Network,", Technical Report, (2002).

[3]

Giuseppe Maria Coclite, Mauro Garavello and Benedetto Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683.

[4]

Nikolas Geroliminis and Carlos Daganzo, Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings,, Transportation Research B, 42 (2008), 759. doi: 10.1016/j.trb.2008.02.002.

[5]

Helge Holden and Nils Henrik Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289.

[6]

Yangbeibei Ji, Winnie Daamen, Serge Hoogendoorn, Sascha Hoogendoorn-Lanser and Xiaoyu Qian, Investigating the shape of the macroscopic fundamental diagram using simulation data,, Transportation Research Record: Journal of the Transportation Research Board, 2161 (2010), 40. doi: 10.3141/2161-05.

[7]

Jean-Patrick Lebacque, The Godunov scheme and what it means for first order traffic flow models,, Transportation and Traffic Theory. Proceedings of the 13th ISTTT (J. B. Lesort Editor), (1996), 647.

[8]

Jean-Patrick Lebacque and Megan Khoshyaran, Macroscopic flow models: Intersection modeling, network modeling,, Transportation planning: The state of the art. Kluwer Academic Press, (2002), 119.

[9]

Jean-Patrick Lebacque and Megan Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling,, Transportation and Traffic Theory. Flow, (2005), 365.

[10]

M. H. Lighthill and G. B. Whitham, On kinematic waves II: A theory of traffic flow on long crowded roads,, Proceedings of the Royal Society, A, 229 (1955), 317.

[11]

Luis Miguel Romero Prez and Francisco García Benítez, Traffic flow continuum modeling by hypersingular boundary integral equations,, International Journal for Numerical Methods in Engineering, 82 (2010), 47. doi: 10.1002/nme.2754.

[12]

Paul I. Richards, Shock-waves on the highway,, Operations Research, 4 (1956), 42.

[13]

Azuma Taguchi and Masao Iri, Continuum approximation to dense networks and its application to the analysis of urban road networks. Applications,, Mathematical Programming Study, 20 (1982), 178.

[14]

John Glen Wardrop, Some theorical aspects of road traffic research,, Proceedings of the Institute of Civil Engineers, II (1952), 328.

[15]

S. C. Wong, Multi-commodity traffic assignement by continuum approximation of network flow with variable demand,, Transportation Research B, 32 (1998), 567.

[16]

Hai Yang, Sam Yagar and Yasunori Iida, Traffic assignment in congested discrete/ continuous transportation system,, Transportation Research B, 28 (1994), 161. doi: 10.1016/0191-2615(94)90023-X.

show all references

References:
[1]

Jean-Bernard Baillon and Guillaume Carlier, From discrete to continuous Wardrop equilibria,, Networks and Heterogeneous Media, 7 (2012), 219. doi: 10.3934/nhm.2012.7.219.

[2]

Giuseppe Maria Coclite and Benedetto Piccoli, "Traffic Flow on a Road Network,", Technical Report, (2002).

[3]

Giuseppe Maria Coclite, Mauro Garavello and Benedetto Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862. doi: 10.1137/S0036141004402683.

[4]

Nikolas Geroliminis and Carlos Daganzo, Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings,, Transportation Research B, 42 (2008), 759. doi: 10.1016/j.trb.2008.02.002.

[5]

Helge Holden and Nils Henrik Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999. doi: 10.1137/S0036141093243289.

[6]

Yangbeibei Ji, Winnie Daamen, Serge Hoogendoorn, Sascha Hoogendoorn-Lanser and Xiaoyu Qian, Investigating the shape of the macroscopic fundamental diagram using simulation data,, Transportation Research Record: Journal of the Transportation Research Board, 2161 (2010), 40. doi: 10.3141/2161-05.

[7]

Jean-Patrick Lebacque, The Godunov scheme and what it means for first order traffic flow models,, Transportation and Traffic Theory. Proceedings of the 13th ISTTT (J. B. Lesort Editor), (1996), 647.

[8]

Jean-Patrick Lebacque and Megan Khoshyaran, Macroscopic flow models: Intersection modeling, network modeling,, Transportation planning: The state of the art. Kluwer Academic Press, (2002), 119.

[9]

Jean-Patrick Lebacque and Megan Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling,, Transportation and Traffic Theory. Flow, (2005), 365.

[10]

M. H. Lighthill and G. B. Whitham, On kinematic waves II: A theory of traffic flow on long crowded roads,, Proceedings of the Royal Society, A, 229 (1955), 317.

[11]

Luis Miguel Romero Prez and Francisco García Benítez, Traffic flow continuum modeling by hypersingular boundary integral equations,, International Journal for Numerical Methods in Engineering, 82 (2010), 47. doi: 10.1002/nme.2754.

[12]

Paul I. Richards, Shock-waves on the highway,, Operations Research, 4 (1956), 42.

[13]

Azuma Taguchi and Masao Iri, Continuum approximation to dense networks and its application to the analysis of urban road networks. Applications,, Mathematical Programming Study, 20 (1982), 178.

[14]

John Glen Wardrop, Some theorical aspects of road traffic research,, Proceedings of the Institute of Civil Engineers, II (1952), 328.

[15]

S. C. Wong, Multi-commodity traffic assignement by continuum approximation of network flow with variable demand,, Transportation Research B, 32 (1998), 567.

[16]

Hai Yang, Sam Yagar and Yasunori Iida, Traffic assignment in congested discrete/ continuous transportation system,, Transportation Research B, 28 (1994), 161. doi: 10.1016/0191-2615(94)90023-X.

[1]

Yunan Wu, T. C. Edwin Cheng. Classical duality and existence results for a multi-criteria supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2009, 5 (3) : 615-628. doi: 10.3934/jimo.2009.5.615

[2]

T.C. Edwin Cheng, Yunan Wu. Henig efficiency of a multi-criterion supply-demand network equilibrium model. Journal of Industrial & Management Optimization, 2006, 2 (3) : 269-286. doi: 10.3934/jimo.2006.2.269

[3]

Liping Zhang. A nonlinear complementarity model for supply chain network equilibrium. Journal of Industrial & Management Optimization, 2007, 3 (4) : 727-737. doi: 10.3934/jimo.2007.3.727

[4]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670

[5]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[6]

Jia Shu, Jie Sun. Designing the distribution network for an integrated supply chain. Journal of Industrial & Management Optimization, 2006, 2 (3) : 339-349. doi: 10.3934/jimo.2006.2.339

[7]

Jiangtao Mo, Liqun Qi, Zengxin Wei. A network simplex algorithm for simple manufacturing network model. Journal of Industrial & Management Optimization, 2005, 1 (2) : 251-273. doi: 10.3934/jimo.2005.1.251

[8]

Wenbin Wang, Peng Zhang, Junfei Ding, Jian Li, Hao Sun, Lingyun He. Closed-loop supply chain network equilibrium model with retailer-collection under legislation. Journal of Industrial & Management Optimization, 2018, 13 (5) : 1-21. doi: 10.3934/jimo.2018039

[9]

Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks & Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255

[10]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[11]

Zsolt Saffer, Miklós Telek. Analysis of globally gated Markovian limited cyclic polling model and its application to uplink traffic in the IEEE 802.16 network. Journal of Industrial & Management Optimization, 2011, 7 (3) : 677-697. doi: 10.3934/jimo.2011.7.677

[12]

Yinfei Li, Shuping Chen. Optimal traffic signal control for an $M\times N$ traffic network. Journal of Industrial & Management Optimization, 2008, 4 (4) : 661-672. doi: 10.3934/jimo.2008.4.661

[13]

Ashkan Mohsenzadeh Ledari, Alireza Arshadi Khamseh, Mohammad Mohammadi. A three echelon revenue oriented green supply chain network design. Numerical Algebra, Control & Optimization, 2018, 8 (2) : 157-168. doi: 10.3934/naco.2018009

[14]

K. A. Ariyawansa, Leonid Berlyand, Alexander Panchenko. A network model of geometrically constrained deformations of granular materials. Networks & Heterogeneous Media, 2008, 3 (1) : 125-148. doi: 10.3934/nhm.2008.3.125

[15]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051

[16]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[17]

Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355

[18]

K. L. Mak, J. G. Peng, Z. B. Xu, K. F. C. Yiu. A novel neural network for associative memory via dynamical systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 573-590. doi: 10.3934/dcdsb.2006.6.573

[19]

András Bátkai, Istvan Z. Kiss, Eszter Sikolya, Péter L. Simon. Differential equation approximations of stochastic network processes: An operator semigroup approach. Networks & Heterogeneous Media, 2012, 7 (1) : 43-58. doi: 10.3934/nhm.2012.7.43

[20]

Dengfeng Sun, Issam S. Strub, Alexandre M. Bayen. Comparison of the performance of four Eulerian network flow models for strategic air traffic management. Networks & Heterogeneous Media, 2007, 2 (4) : 569-595. doi: 10.3934/nhm.2007.2.569

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (4)

[Back to Top]