2013, 8(1): 9-22. doi: 10.3934/nhm.2013.8.9

A nonlinear partial differential equation for the volume preserving mean curvature flow

1. 

Department of Applied Mathematics, University of Crete, 714 09 Heraklion

Received  September 2011 Published  April 2013

We analyze the evolution of multi-dimensional normal graphs over the unit sphere under volume preserving mean curvature flow and derive a non-linear partial differential equation in polar coordinates. Furthermore, we construct finite difference numerical schemes and present numerical results for the evolution of non-convex closed plane curves under this flow, to observe that they become convex very fast.
Citation: Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9
References:
[1]

N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in a Riemannian manifold,, J. Differential Geom., 64 (2003), 247.

[2]

D. C. Antonopoulou, G. D. Karali and I. M. Sigal, Stability of spheres under volume preserving mean curvature flow,, Dynamics of PDE, 7 (2010), 327.

[3]

J. Escher and G. Simonett, A center manifold analysis for the mullins-sekerka model,, J. Differential Eq., 143 (1998), 267. doi: 10.1006/jdeq.1997.3373.

[4]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres,, Proc. Amer. Math. Soc., 126 (1998), 2789. doi: 10.1090/S0002-9939-98-04727-3.

[5]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor,, Contemp. Math., 51 (1986), 51. doi: 10.1090/conm/051/848933.

[6]

M. Gage and R. Hamilton, The Heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.

[7]

Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow,, J. Geom. Anal., 19 (2009), 36. doi: 10.1007/s12220-008-9050-y.

[8]

M. A. Grayson, The Heat Equation shrinks embedded plane curves to round points,, J. Differential Geom., 26 (1987), 285.

[9]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35. doi: 10.1515/crll.1987.382.35.

[10]

E. Kreyszig, "Differential Geometry,", Dover Publications, (1991).

[11]

N. Shimakura, "Partial Differential Operators of Elliptic Type,", Translations of Mathematical Monographs, 99 (1992).

[12]

M. Struwe, Geometric evolution problems. Nonlinear partial differential equations in differential geometry,, IAS/Park City Math. Ser., (1992), 257.

show all references

References:
[1]

N. D. Alikakos and A. Freire, The normalized mean curvature flow for a small bubble in a Riemannian manifold,, J. Differential Geom., 64 (2003), 247.

[2]

D. C. Antonopoulou, G. D. Karali and I. M. Sigal, Stability of spheres under volume preserving mean curvature flow,, Dynamics of PDE, 7 (2010), 327.

[3]

J. Escher and G. Simonett, A center manifold analysis for the mullins-sekerka model,, J. Differential Eq., 143 (1998), 267. doi: 10.1006/jdeq.1997.3373.

[4]

J. Escher and G. Simonett, The volume preserving mean curvature flow near spheres,, Proc. Amer. Math. Soc., 126 (1998), 2789. doi: 10.1090/S0002-9939-98-04727-3.

[5]

M. Gage, On an area-preserving evolution equation for plane curves, Nonlinear Problems in Geometry, D. M. DeTurck, editor,, Contemp. Math., 51 (1986), 51. doi: 10.1090/conm/051/848933.

[6]

M. Gage and R. Hamilton, The Heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69.

[7]

Z. Gang and I. M. Sigal, Neck pinching dynamics under mean curvature flow,, J. Geom. Anal., 19 (2009), 36. doi: 10.1007/s12220-008-9050-y.

[8]

M. A. Grayson, The Heat Equation shrinks embedded plane curves to round points,, J. Differential Geom., 26 (1987), 285.

[9]

G. Huisken, The volume preserving mean curvature flow,, J. Reine Angew. Math., 382 (1987), 35. doi: 10.1515/crll.1987.382.35.

[10]

E. Kreyszig, "Differential Geometry,", Dover Publications, (1991).

[11]

N. Shimakura, "Partial Differential Operators of Elliptic Type,", Translations of Mathematical Monographs, 99 (1992).

[12]

M. Struwe, Geometric evolution problems. Nonlinear partial differential equations in differential geometry,, IAS/Park City Math. Ser., (1992), 257.

[1]

Jan Prüss, Gieri Simonett, Rico Zacher. On normal stability for nonlinear parabolic equations. Conference Publications, 2009, 2009 (Special) : 612-621. doi: 10.3934/proc.2009.2009.612

[2]

Nicolas Dirr, Federica Dragoni, Max von Renesse. Evolution by mean curvature flow in sub-Riemannian geometries: A stochastic approach. Communications on Pure & Applied Analysis, 2010, 9 (2) : 307-326. doi: 10.3934/cpaa.2010.9.307

[3]

Marie Henry, Danielle Hilhorst, Masayasu Mimura. A reaction-diffusion approximation to an area preserving mean curvature flow coupled with a bulk equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 125-154. doi: 10.3934/dcdss.2011.4.125

[4]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[5]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

[6]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[7]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

[8]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure & Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[9]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[10]

Miroslav KolÁŘ, Michal BeneŠ, Daniel ŠevČoviČ. Area preserving geodesic curvature driven flow of closed curves on a surface. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3671-3689. doi: 10.3934/dcdsb.2017148

[11]

Wolfgang Walter. Nonlinear parabolic differential equations and inequalities. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 451-468. doi: 10.3934/dcds.2002.8.451

[12]

H. Gajewski, I. V. Skrypnik. To the uniqueness problem for nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 315-336. doi: 10.3934/dcds.2004.10.315

[13]

Lizhi Ruan, Changjiang Zhu. Boundary layer for nonlinear evolution equations with damping and diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 331-352. doi: 10.3934/dcds.2012.32.331

[14]

Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881

[15]

Risei Kano, Yusuke Murase. Solvability of nonlinear evolution equations generated by subdifferentials and perturbations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 75-93. doi: 10.3934/dcdss.2014.7.75

[16]

Alessio Pomponio. Oscillating solutions for prescribed mean curvature equations: euclidean and lorentz-minkowski cases. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3899-3911. doi: 10.3934/dcds.2018169

[17]

Yoshikazu Giga, Yukihiro Seki, Noriaki Umeda. On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1463-1470. doi: 10.3934/dcds.2011.29.1463

[18]

Bendong Lou. Periodic traveling waves of a mean curvature flow in heterogeneous media. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 231-249. doi: 10.3934/dcds.2009.25.231

[19]

Sigurd Angenent. Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 1-8. doi: 10.3934/nhm.2013.8.1

[20]

Hongjie Ju, Jian Lu, Huaiyu Jian. Translating solutions to mean curvature flow with a forcing term in Minkowski space. Communications on Pure & Applied Analysis, 2010, 9 (4) : 963-973. doi: 10.3934/cpaa.2010.9.963

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]