March  2014, 9(1): 161-168. doi: 10.3934/nhm.2014.9.161

Constant in two-dimensional $p$-compliance-network problem

1. 

International Centre for Theoretical Physics, Strada Costiera,11, I - 34151 Trieste

Received  April 2013 Revised  October 2013 Published  April 2014

We consider the problem of the minimization of the $p$-compliance functional where the control variables $\Sigma$ are taking among closed connected one-dimensional sets. We prove some estimate from below of the $p$-compliance functional in terms of the one-dimensional Hausdorff measure of $\Sigma$ and compute the value of a constant $\theta(p)$ appearing usually in $\Gamma$-limit functional of the rescaled $p$-compliance functional.
Citation: Al-hassem Nayam. Constant in two-dimensional $p$-compliance-network problem. Networks & Heterogeneous Media, 2014, 9 (1) : 161-168. doi: 10.3934/nhm.2014.9.161
References:
[1]

D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations,, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945. doi: 10.1017/S0308210500030006.

[2]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Networks and Heterogeneous Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761.

[3]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752. doi: 10.1051/cocv:2006020.

[4]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8.

[5]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem,, J. Conv. Anal., 12 (2005), 145.

[6]

P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length,, Networks and Heterogeneous Media, 7 (2012), 127. doi: 10.3934/nhm.2012.7.127.

[7]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,, Graduate texts in Mathematics, (1989). doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

D. Bucur and P. Trebeschi, Shape optimization governed by nonlinear state equations,, Proc. Roy. Soc. Edinburgh - A, 128 (1998), 945. doi: 10.1017/S0308210500030006.

[2]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Networks and Heterogeneous Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761.

[3]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optimization and Calculus of Variations, 12 (2006), 752. doi: 10.1051/cocv:2006020.

[4]

G. Dal Maso, An Introduction to $\Gamma$-Convergence,, Birkhäuser, (1993). doi: 10.1007/978-1-4612-0327-8.

[5]

S. Mosconi and P. Tilli, $\Gamma$-convergence for the irrigation problem,, J. Conv. Anal., 12 (2005), 145.

[6]

P. Tilli, Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length,, Networks and Heterogeneous Media, 7 (2012), 127. doi: 10.3934/nhm.2012.7.127.

[7]

W. P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,, Graduate texts in Mathematics, (1989). doi: 10.1007/978-1-4612-1015-3.

[1]

Gianni Dal Maso. Ennio De Giorgi and $\mathbf\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1017-1021. doi: 10.3934/dcds.2011.31.1017

[2]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[3]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[4]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[5]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[6]

Benedict Geihe, Martin Rumpf. A posteriori error estimates for sequential laminates in shape optimization. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1377-1392. doi: 10.3934/dcdss.2016055

[7]

Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625

[8]

Markus Muhr, Vanja Nikolić, Barbara Wohlmuth, Linus Wunderlich. Isogeometric shape optimization for nonlinear ultrasound focusing. Evolution Equations & Control Theory, 2019, 8 (1) : 163-202. doi: 10.3934/eect.2019010

[9]

Chunlei Zhang, Qin Sheng, Raúl Ordóñez. Notes on the convergence and applications of surrogate optimization. Conference Publications, 2005, 2005 (Special) : 947-956. doi: 10.3934/proc.2005.2005.947

[10]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[11]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[12]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

[13]

Lekbir Afraites, Marc Dambrine, Karsten Eppler, Djalil Kateb. Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 389-416. doi: 10.3934/dcdsb.2007.8.389

[14]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations & Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[15]

Afaf Bouharguane, Pascal Azerad, Frédéric Bouchette, Fabien Marche, Bijan Mohammadi. Low complexity shape optimization & a posteriori high fidelity validation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 759-772. doi: 10.3934/dcdsb.2010.13.759

[16]

Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127

[17]

Weijun Zhou, Youhua Zhou. On the strong convergence of a modified Hestenes-Stiefel method for nonconvex optimization. Journal of Industrial & Management Optimization, 2013, 9 (4) : 893-899. doi: 10.3934/jimo.2013.9.893

[18]

Chunlin Hao, Xinwei Liu. Global convergence of an SQP algorithm for nonlinear optimization with overdetermined constraints. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 19-29. doi: 10.3934/naco.2012.2.19

[19]

Jie Shen, Jian Lv, Fang-Fang Guo, Ya-Li Gao, Rui Zhao. A new proximal chebychev center cutting plane algorithm for nonsmooth optimization and its convergence. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1143-1155. doi: 10.3934/jimo.2018003

[20]

Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485-491. doi: 10.3934/jimo.2012.8.485

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]