2014, 9(3): 501-518. doi: 10.3934/nhm.2014.9.501

On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains

1. 

Department of Information Engineering, Electrical Engineering and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, Fisciano (SA), Italy

2. 

Department of Differential Equations, Dnipropetrovsk National University, Gagarin av., 72, 49010 Dnipropetrovsk, Ukraine

3. 

Dept. of Information Eng., Electrical Eng. and Applied Mathematics, University of Salerno, Via Giovanni Paolo II, 132, I 84084 Fisciano (SA), Italy

Received  April 2014 Revised  July 2014 Published  October 2014

We discuss the optimal control problem (OCP) stated as the minimization of the queues and the difference between the effective outflow and a desired one for the continuous model of supply chains, consisting of a PDE for the density of processed parts and an ODE for the queue buffer occupancy. The main goal is to consider this problem with pointwise control and state constraints. Using the so-called Henig delation, we propose the relaxation approach to characterize the solvability and regularity of the original problem by analyzing the corresponding relaxed OCP.
Citation: Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501
References:
[1]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM Journal on Applied Mathematics, 66 (2006), 896. doi: 10.1137/040604625.

[2]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization,, SIAM, (2006).

[3]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661. doi: 10.3934/nhm.2007.2.661.

[4]

G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs,, in Analytical and Numerical Aspects of PDEs, (2009).

[5]

C. F. Daganzo, A Theory of Supply Chains,, Springer-Verlag, (2003). doi: 10.1007/978-3-642-18152-8.

[6]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010). doi: 10.1137/1.9780898717600.

[7]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, JFar East J. Appl. Math., 46 (2010), 85.

[8]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain,, Networks and Heterogeneous Media, 1 (2006), 379. doi: 10.3934/nhm.2006.1.379.

[9]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419.

[10]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374. doi: 10.1016/j.jmaa.2009.07.058.

[11]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains,, Commun. Math. Sci., 10 (2012), 1225. doi: 10.4310/CMS.2012.v10.n4.a10.

[12]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634. doi: 10.1137/120889721.

[13]

F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, Journal of Differential Equations, 71 (1988), 93. doi: 10.1016/0022-0396(88)90040-X.

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Birkhäuser, (1984). doi: 10.1007/978-1-4684-9486-0.

[15]

S. Göttlich, M. Herty and A. Klar, Network models for supply chains,, Comm. Math. Sci., 3 (2005), 545. doi: 10.4310/CMS.2005.v3.n4.a5.

[16]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Comm. Math. Sci., 4 (2006), 315. doi: 10.4310/CMS.2006.v4.n2.a3.

[17]

K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks,, SIAM J. Control Optim., 52 (2014), 663. doi: 10.1137/120868943.

[18]

D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks,, Phys. Rev., 70 (2004), 66. doi: 10.1103/PhysRevE.70.066116.

[19]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160. doi: 10.1137/060659478.

[20]

C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models,, Netw. Heterog. Media, 1 (2006), 675. doi: 10.3934/nhm.2006.1.675.

[21]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis,, Birkhäuser Verlag, (2011). doi: 10.1007/978-0-8176-8149-4.

[22]

P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381. doi: 10.1007/s10883-013-9184-5.

[23]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automatic Control, 55 (2010), 2511. doi: 10.1109/TAC.2010.2046925.

[24]

P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves,, Society of Industrial and Applied Mathematics, (1973).

[25]

M. Miranda, Comportamento delle successioni convergenti di frontiere minimali,, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238.

[26]

R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints,, PhD thesis, (2014).

[27]

D. M. Zhuang, Density result for proper efficiencies,, SIAM J. on Control and Optimiz., 32 (1994), 51. doi: 10.1137/S0363012989171518.

show all references

References:
[1]

D. Armbruster, P. Degond and C. Ringhofer, A model for the dynamics of large queuing networks and supply chains,, SIAM Journal on Applied Mathematics, 66 (2006), 896. doi: 10.1137/040604625.

[2]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Application to PDE and Optimization,, SIAM, (2006).

[3]

G. Bretti, C. D'Apice, R. Manzo and B. Piccoli, A continuum-discrete model for supply chains dynamics,, Networks and Heterogeneous Media, 2 (2007), 661. doi: 10.3934/nhm.2007.2.661.

[4]

G. A. Chechkin and A. Yu. Goritsky, S.N. Kruzhkov's Lectures on First-Order Quasilinear PDEs,, in Analytical and Numerical Aspects of PDEs, (2009).

[5]

C. F. Daganzo, A Theory of Supply Chains,, Springer-Verlag, (2003). doi: 10.1007/978-3-642-18152-8.

[6]

C. D'Apice, S. Göttlich, M. Herty and B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach,, SIAM, (2010). doi: 10.1137/1.9780898717600.

[7]

C. D'Apice, P. I. Kogut and R. Manzo, Efficient controls for one class of fluid dynamic models,, JFar East J. Appl. Math., 46 (2010), 85.

[8]

C. D'Apice and R. Manzo, A fluid-dynamic model for supply chain,, Networks and Heterogeneous Media, 1 (2006), 379. doi: 10.3934/nhm.2006.1.379.

[9]

C. D'Apice, R. Manzo and B. Piccoli, Modelling supply networks with partial differential equations,, Quarterly of Applied Mathematics, 67 (2009), 419.

[10]

C. D'Apice, R. Manzo and B. Piccoli, Existence of solutions to Cauchy problems for a mixed continuum-discrete model for supply chains and networks,, Journal of Mathematical Analysis and Applications, 362 (2010), 374. doi: 10.1016/j.jmaa.2009.07.058.

[11]

C. D'Apice, R. Manzo and B. Piccoli, Optimal input flow for a PDE-ODE model of supply chains,, Commun. Math. Sci., 10 (2012), 1225. doi: 10.4310/CMS.2012.v10.n4.a10.

[12]

C. D'Apice, R. Manzo and B. Piccoli, Numerical schemes for the optimal input flow of a supply-chain,, SIAM Journal on Numerical Analysis, 51 (2013), 2634. doi: 10.1137/120889721.

[13]

F. Dubois and P. L. Lefloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws,, Journal of Differential Equations, 71 (1988), 93. doi: 10.1016/0022-0396(88)90040-X.

[14]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Birkhäuser, (1984). doi: 10.1007/978-1-4684-9486-0.

[15]

S. Göttlich, M. Herty and A. Klar, Network models for supply chains,, Comm. Math. Sci., 3 (2005), 545. doi: 10.4310/CMS.2005.v3.n4.a5.

[16]

S. Göttlich, M. Herty and A. Klar, Modelling and optimization of supply chains on complex networks,, Comm. Math. Sci., 4 (2006), 315. doi: 10.4310/CMS.2006.v4.n2.a3.

[17]

K. Han, T. L. Friesz and T. Yao, A variational approach for continuous supply chain networks,, SIAM J. Control Optim., 52 (2014), 663. doi: 10.1137/120868943.

[18]

D. Helbing, S. Lämmer, T. Seidel, P. Seba and T. Platkowsk, Physics, stability and dynamics of supply networks,, Phys. Rev., 70 (2004), 66. doi: 10.1103/PhysRevE.70.066116.

[19]

M. Herty, A. Klar and B. Piccoli, Existence of solutions for supply chain models based on partial differential equations,, SIAM J. Math. Anal., 39 (2007), 160. doi: 10.1137/060659478.

[20]

C. Kirchner, M. Herty, S. Göttlich and A. Klar, Optimal Control for Continuous Supply Network Models,, Netw. Heterog. Media, 1 (2006), 675. doi: 10.3934/nhm.2006.1.675.

[21]

P. I. Kogut and G. Leugering, Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis,, Birkhäuser Verlag, (2011). doi: 10.1007/978-0-8176-8149-4.

[22]

P. I. Kogut and R. Manzo, On Vector-valued approximation of state constrained optimal control problems for nonlinear hyperbolic conservation laws,, Journal of Dynamical and Control Systems, 19 (2013), 381. doi: 10.1007/s10883-013-9184-5.

[23]

M. La Marca, D. Armbruster, M. Herty and C. Ringhofer, Control of continuum models of production systems,, IEEE Trans. Automatic Control, 55 (2010), 2511. doi: 10.1109/TAC.2010.2046925.

[24]

P. D. Lax, Hyperbolic System of Conservation Laws and the Mathematical Theory of Shock Waves,, Society of Industrial and Applied Mathematics, (1973).

[25]

M. Miranda, Comportamento delle successioni convergenti di frontiere minimali,, Rend. Sem. Mat. Univ. Padova, 38 (1967), 238.

[26]

R. Schiel, Vector Optimization ans Control with PDEs and Pointwise State Constraints,, PhD thesis, (2014).

[27]

D. M. Zhuang, Density result for proper efficiencies,, SIAM J. on Control and Optimiz., 32 (1994), 51. doi: 10.1137/S0363012989171518.

[1]

Shijin Deng, Weike Wang. Pointwise estimates of solutions for the multi-dimensional scalar conservation laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1107-1138. doi: 10.3934/dcds.2011.30.1107

[2]

Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks & Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349

[3]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[4]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[5]

K. F. Cedric Yiu, S. Y. Wang, K. L. Mak. Optimal portfolios under a value-at-risk constraint with applications to inventory control in supply chains. Journal of Industrial & Management Optimization, 2008, 4 (1) : 81-94. doi: 10.3934/jimo.2008.4.81

[6]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[7]

Christophe Prieur. Control of systems of conservation laws with boundary errors. Networks & Heterogeneous Media, 2009, 4 (2) : 393-407. doi: 10.3934/nhm.2009.4.393

[8]

Yanning Li, Edward Canepa, Christian Claudel. Efficient robust control of first order scalar conservation laws using semi-analytical solutions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 525-542. doi: 10.3934/dcdss.2014.7.525

[9]

Darko Mitrovic. New entropy conditions for scalar conservation laws with discontinuous flux. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1191-1210. doi: 10.3934/dcds.2011.30.1191

[10]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[11]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[12]

C. M. Khalique, G. S. Pai. Conservation laws and invariant solutions for soil water equations. Conference Publications, 2003, 2003 (Special) : 477-481. doi: 10.3934/proc.2003.2003.477

[13]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[14]

Constantine M. Dafermos. Hyperbolic balance laws with relaxation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4271-4285. doi: 10.3934/dcds.2016.36.4271

[15]

Jason Chao-Hsien Pan, Ku-Kuang Chang, Yu-Cheng Hsiao. Optimal inventory policies for serial-type and assembly-type supply chains with equal sized batch. Journal of Industrial & Management Optimization, 2015, 11 (3) : 1021-1040. doi: 10.3934/jimo.2015.11.1021

[16]

Fengbai Li, Feng Rong. Decay of solutions to fractal parabolic conservation laws with large initial data. Communications on Pure & Applied Analysis, 2013, 12 (2) : 973-984. doi: 10.3934/cpaa.2013.12.973

[17]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[18]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks & Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[19]

Avner Friedman. Conservation laws in mathematical biology. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3081-3097. doi: 10.3934/dcds.2012.32.3081

[20]

Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565-581. doi: 10.3934/nhm.2010.5.565

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]