-
Previous Article
Characteristic half space problem for the Broadwell model
- NHM Home
- This Issue
-
Next Article
Asymptotic synchronous behavior of Kuramoto type models with frustrations
Numerical network models and entropy principles for isothermal junction flow
1. | Dept. of Energy and Process Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway |
We describe a numerical implementation of the network models, where the flow in each pipe section is calculated using a classical high-resolution Roe scheme. We propose a numerical treatment of the boundary conditions at the pipe-junction interface, consistent with the coupling conditions. In particular, mass is exactly conserved across the junction.
Numerical results are provided for two different network configurations and for three different network models. Mechanical energy considerations are applied in order to evaluate the results in terms of physical soundness. Analytical predictions for junctions connecting three pipe sections are verified for both network configurations. Long term behaviour of physical and unphysical solutions are presented and compared, and the impact of having pipes with different cross-sectional area is shown.
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.
doi: 10.3934/nhm.2006.1.41. |
[2] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.
doi: 10.3934/nhm.2006.1.295. |
[3] |
M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks,, SIAM J. Sci. Comput., 31 (2010), 4633.
doi: 10.1137/080722138. |
[4] |
M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds,, Math. Comput. Appl., 15 (2010), 574.
|
[5] |
J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks,, Multiscale Model. Simul., 9 (2011), 601.
doi: 10.1137/100813580. |
[6] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862.
doi: 10.1137/S0036141004402683. |
[7] |
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction,, Netw. Heterog. Media, 1 (2006), 495.
doi: 10.3934/nhm.2006.1.495. |
[8] |
R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction,, SIAM J. Math. Anal., 39 (2008), 1456.
doi: 10.1137/060665841. |
[9] |
R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605.
doi: 10.1137/070690298. |
[10] |
R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction,, J. Hyperbol. Differ. Eq., 5 (2008), 547.
doi: 10.1142/S0219891608001593. |
[11] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edition, (2010).
doi: 10.1007/978-3-642-04048-1. |
[12] |
M. Garavello, A review of conservation laws on networks,, Netw. Heterog. Media, 5 (2010), 565.
doi: 10.3934/nhm.2010.5.565. |
[13] |
M. Herty, Coupling conditions for networked systems of Euler equations,, SIAM J. Sci. Comput., 30 (2008), 1596.
doi: 10.1137/070688535. |
[14] |
M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections,, Netw. Heterog. Media, 56 (2008), 485.
doi: 10.1002/fld.1531. |
[15] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999.
doi: 10.1137/S0036141093243289. |
[16] |
S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses,, Int. J. Numer. Meth. Fluids, 65 (2011), 707.
doi: 10.1002/fld.2212. |
[17] |
T. Kiuchi, An implicit method for transient gas flows in pipe networks,, Int. J. Heat and Fluid Flow, 15 (1994), 378.
doi: 10.1016/0142-727X(94)90051-5. |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, 6th edition, (2007).
doi: 10.1017/CBO9780511791253. |
[19] |
A. Osiadacz, Simulation of transient gas flows in networks,, Int. J. Numer. Meth. Fluids, 4 (1984), 13.
doi: 10.1002/fld.1650040103. |
[20] |
R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction,, J. Eng. Gas Turbines Power, 122 (2000), 549.
doi: 10.1115/1.1290589. |
[21] |
J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions,, Experimental Thermal and Fluid Science, 31 (2006), 61. Google Scholar |
[22] |
G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow,, Submitted, (2013). Google Scholar |
[23] |
P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes,, Journal of Computational Physics, 43 (1981), 357.
doi: 10.1016/0021-9991(81)90128-5. |
[24] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, 3rd edition, (2009).
doi: 10.1007/b79761. |
show all references
References:
[1] |
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks,, Netw. Heterog. Media, 1 (2006), 41.
doi: 10.3934/nhm.2006.1.41. |
[2] |
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations,, Netw. Heterog. Media, 1 (2006), 295.
doi: 10.3934/nhm.2006.1.295. |
[3] |
M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Toward a mathematical analysis for drift-flux multiphase flow models in networks,, SIAM J. Sci. Comput., 31 (2010), 4633.
doi: 10.1137/080722138. |
[4] |
M. K. Banda, M. Herty and J.-M. T. Ngnotchouye, Coupling drift-flux models with unequal sonic speeds,, Math. Comput. Appl., 15 (2010), 574.
|
[5] |
J. Brouwer, I. Gasser and M. Herty, Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks,, Multiscale Model. Simul., 9 (2011), 601.
doi: 10.1137/100813580. |
[6] |
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network,, SIAM J. Math. Anal., 36 (2005), 1862.
doi: 10.1137/S0036141004402683. |
[7] |
R. M. Colombo and M. Garavello, A well posed Riemann problem for the $p$-system at a junction,, Netw. Heterog. Media, 1 (2006), 495.
doi: 10.3934/nhm.2006.1.495. |
[8] |
R. M. Colombo and M. Garavello, On the Cauchy problem for the $p$-system at a junction,, SIAM J. Math. Anal., 39 (2008), 1456.
doi: 10.1137/060665841. |
[9] |
R. M. Colombo, M. Herty and V. Sachers, On 2 $\times$ 2 conservation laws at a junction,, SIAM J. Math. Anal., 40 (2008), 605.
doi: 10.1137/070690298. |
[10] |
R. M. Colombo and C. Mauri, Euler system for compressible fluids at a junction,, J. Hyperbol. Differ. Eq., 5 (2008), 547.
doi: 10.1142/S0219891608001593. |
[11] |
C. M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, 3rd edition, (2010).
doi: 10.1007/978-3-642-04048-1. |
[12] |
M. Garavello, A review of conservation laws on networks,, Netw. Heterog. Media, 5 (2010), 565.
doi: 10.3934/nhm.2010.5.565. |
[13] |
M. Herty, Coupling conditions for networked systems of Euler equations,, SIAM J. Sci. Comput., 30 (2008), 1596.
doi: 10.1137/070688535. |
[14] |
M. Herty and M. Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections,, Netw. Heterog. Media, 56 (2008), 485.
doi: 10.1002/fld.1531. |
[15] |
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads,, SIAM J. Math. Anal., 26 (1995), 999.
doi: 10.1137/S0036141093243289. |
[16] |
S. W. Hong and C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses,, Int. J. Numer. Meth. Fluids, 65 (2011), 707.
doi: 10.1002/fld.2212. |
[17] |
T. Kiuchi, An implicit method for transient gas flows in pipe networks,, Int. J. Heat and Fluid Flow, 15 (1994), 378.
doi: 10.1016/0142-727X(94)90051-5. |
[18] |
R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, 6th edition, (2007).
doi: 10.1017/CBO9780511791253. |
[19] |
A. Osiadacz, Simulation of transient gas flows in networks,, Int. J. Numer. Meth. Fluids, 4 (1984), 13.
doi: 10.1002/fld.1650040103. |
[20] |
R. J. Pearson, M. D. Bassett, P. Batten and D. E. Winterbone, Two-dimensional simulation of wave propagation in a three-pipe junction,, J. Eng. Gas Turbines Power, 122 (2000), 549.
doi: 10.1115/1.1290589. |
[21] |
J. Pérez-García, E. Sanmiguel-Rojas, J. Hernández-Grau and A. Viedma, Numerical and experimental investigations on internal compressible flow at T-type junctions,, Experimental Thermal and Fluid Science, 31 (2006), 61. Google Scholar |
[22] |
G. A. Reigstad, T. Flåtten, N. E. Haugen and T. Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow,, Submitted, (2013). Google Scholar |
[23] |
P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes,, Journal of Computational Physics, 43 (1981), 357.
doi: 10.1016/0021-9991(81)90128-5. |
[24] |
E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics,, 3rd edition, (2009).
doi: 10.1007/b79761. |
[1] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[2] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[3] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[4] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[5] |
Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020458 |
[6] |
Xiaoxian Tang, Jie Wang. Bistability of sequestration networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1337-1357. doi: 10.3934/dcdsb.2020165 |
[7] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[8] |
Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344 |
[9] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[10] |
Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond. A new model for the emergence of blood capillary networks. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2021001 |
[11] |
Leslaw Skrzypek, Yuncheng You. Feedback synchronization of FHN cellular neural networks. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021001 |
[12] |
Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289 |
[13] |
Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161 |
[14] |
Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115 |
[15] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[16] |
Caterina Balzotti, Simone Göttlich. A two-dimensional multi-class traffic flow model. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020034 |
[17] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[18] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
[19] |
Joan Carles Tatjer, Arturo Vieiro. Dynamics of the QR-flow for upper Hessenberg real matrices. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1359-1403. doi: 10.3934/dcdsb.2020166 |
[20] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]