March  2015, 10(1): 17-35. doi: 10.3934/nhm.2015.10.17

Link prediction in multiplex networks

1. 

SPC, UP13, LIPN, CNRS UMR 7030, 99 Av. J.B. Clément, 93430 Villetaneuse, France, France

Received  July 2014 Revised  December 2014 Published  February 2015

In this work we present a new approach for co-authorship link prediction based on leveraging information contained in general bibliographical multiplex networks. A multiplex network is a graph defined over a set of nodes linked by different types of relations. For instance, the multiplex network we are studying here is defined as follows : nodes represent authors and links can be one of the following types: co-authorship links, co-venue attending links and co-citing links. A supervised-machine learning based link prediction approach is applied. A link formation model is learned based on a set of topological attributes describing both positive and negative examples. While such an approach has been successfully applied in the context on simple networks, different options can be applied to extend it to multiplex networks. One option is to compute topological attributes in each layer of the multiplex. Another one is to compute directly new multiplex-based attributes quantifying the multiplex nature of dyads (potential links). These different approaches are studied and compared through experiments on real datasets extracted from the bibliographical database DBLP.
Citation: Manisha Pujari, Rushed Kanawati. Link prediction in multiplex networks. Networks & Heterogeneous Media, 2015, 10 (1) : 17-35. doi: 10.3934/nhm.2015.10.17
References:
[1]

L. Adamic and E. Adar, Friends and neighbors on the Web,, Social Networks, 25 (2003), 211. doi: 10.1016/S0378-8733(03)00009-1. Google Scholar

[2]

L. A. Adamic, O. Buyukkokten and E. Adar, A social network caught in the Web,, First Monday, 8 (2003), 1995. doi: 10.5210/fm.v8i6.1057. Google Scholar

[3]

C. C. Aggarwal, Y. Xie and P. S. Yu, A framework for dynamic link prediction in heterogeneous networks,, Statistical Analysis and Data Mining, 7 (2014), 14. doi: 10.1002/sam.11198. Google Scholar

[4]

J. A. Aslam and M. Montague, Models for metasearch,, in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, (2001), 276. doi: 10.1145/383952.384007. Google Scholar

[5]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509. Google Scholar

[6]

F. Battiston, V. Nicosia and V. Latora, Metrics for the analysis of multiplex networks,, , (2013). Google Scholar

[7]

N. Benchettara, R. Kanawati and C. Rouveirol, Apprentissage supervisé pour la prédiction de nouveaux liens dans des réseaux sociaux bipartie,, in Actes da la 17iéme Rencontre de la société francophone de classification (SFC'2010), (2010), 63. Google Scholar

[8]

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale and D. Pedreschi, Foundations of Multidimensional Network Analysis,, in Advances in Social Networks Analysis and Mining (ASONAM), (2011), 485. doi: 10.1109/ASONAM.2011.103. Google Scholar

[9]

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale and D. Pedreschi, Multidimensional networks: Foundations of structural analysis,, World Wide Web, 16 (2013), 567. doi: 10.1007/s11280-012-0190-4. Google Scholar

[10]

D. Black, R. Newing, I. McLean, A. McMillan and B. Monroe, The Theory of Committees and Elections by Duncan Black, and Revised Second Editions Committee Decisions with Complementary Valuation by Duncan Black,, 2nd edition, (1998). Google Scholar

[11]

P. Brodka and P. Kazienko, Encyclopedia of Social Network Analysis and Mining,, chapter Multi-Layered Social Networks, (2014). Google Scholar

[12]

P. Chebotarev and E. Shamis, The matrix-Forest theorem and measuring relations in small social groups,, Automation and Remote Control, 58 (1997), 1505. Google Scholar

[13]

Y. Chevaleyre, U. Endriss, J. Lang and N. Maudet, A short introduction to computational social choice,, in SOFSEM 2007: Theory and Practice of Computer Science, (2007), 51. doi: 10.1007/978-3-540-69507-3_4. Google Scholar

[14]

D. A. Davis, R. Lichtenwalter and N. V. Chawla, Multi-relational link prediction in heterogeneous information networks,, in 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), (2011), 281. doi: 10.1109/ASONAM.2011.107. Google Scholar

[15]

J.-C. de Borda, Memoire sur les Elections au Scrutin,, 1781., (). Google Scholar

[16]

Y. Dong, J. Tang, S. Wu, J. Tian, N. V. Chawla, J. Rao and H. Cao, Link prediction and recommendation across heterogeneous social networks,, in 2012 IEEE 12th International Conference on Data Mining (ICDM) (eds. M. J. Zaki, (2012), 181. doi: 10.1109/ICDM.2012.140. Google Scholar

[17]

C. Dwork, R.Kumar, M. Naor and D. Sivakumar, Rank aggregation methods for web,, in Proceedings of the 10th International Conference on World Wide Web, (2001), 613. doi: 10.1145/371920.372165. Google Scholar

[18]

C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation, spam resistance, and social choice,, in WWW '01: Proceedings of 10th International Conference on World Wide Web, (2001), 613. Google Scholar

[19]

F. Fouss, L. Yen, A. Pirotte and M. Saerens, An experimental investigation of graph kernels on a collaborative recommendation task,, in Sixth International Conference on Data Mining (ICDM'06), (2006), 863. doi: 10.1109/ICDM.2006.18. Google Scholar

[20]

S. Gao, L. Denoyer and P. Gallinari, Temporal link prediction by integrating content and structure information,, in Proceedings of the 20th ACM International Conference on Information and Knowledge Management - CIKM '11, (2011), 1169. doi: 10.1145/2063576.2063744. Google Scholar

[21]

M. A. Hasan, V. Chaoji, S. Salem and M. Zaki, Link prediction using supervised learning,, in Proc. of SDM 06 workshop on Link Analysis, (2006). Google Scholar

[22]

Z. Huang, X. Li and H. Chen, Link prediction approach to collaborative filtering,, in Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (eds. M. Marlino, (2005), 141. doi: 10.1145/1065385.1065415. Google Scholar

[23]

P. Jaccard, Étude comparative de la distribution florale dans une portion des alpes et des jura,, Bulletin de la Société Vaudoise des Sciences Naturelles, 37 (1901), 547. Google Scholar

[24]

L. Katz, A new status index derived from socimetric analysis,, Psychmetrika, 18 (1953), 39. doi: 10.1007/BF02289026. Google Scholar

[25]

G. Kossinets, Effects of missing data in social networks,, Social Networks, 28 (2006), 247. doi: 10.1016/j.socnet.2005.07.002. Google Scholar

[26]

T.-T. Kuo, R. Yan, Y.-Y. Huang, P.-H. Kung and S.-D. Lin, Unsupervised link prediction using aggregative statistics on heterogeneous social networks,, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2013), 775. doi: 10.1145/2487575.2487614. Google Scholar

[27]

J. B. Lee and H. Adorna, Link prediction in a modified heterogeneous bibliographic network,, in ASONAM, (2012), 442. doi: 10.1109/ASONAM.2012.78. Google Scholar

[28]

D. Liben-Nowell and J. Kleinberg, The link prediction problem for social networks,, in Proceedings of the Twelfth International Conference on Information and Knowledge Management, (2003), 556. doi: 10.1145/956863.956972. Google Scholar

[29]

D. Liben-Nowell and J. M. Kleinberg, The link-prediction problem for social networks,, JASIST, 58 (2007), 1019. Google Scholar

[30]

R. N. Lichtenwalter, J. T. Lussier and N. V. Chawla, New perspectives and methods in link prediction,, in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '10, (2010), 243. doi: 10.1145/1835804.1835837. Google Scholar

[31]

R. Lichtnwalter and N. Chawla, Link prediction: Fair and effective evaluation,, in 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), (2012), 376. doi: 10.1109/ASONAM.2012.68. Google Scholar

[32]

N. Littlestone and M. K. Warmuth, Weighted majority algorithm,, Information and Computation, 108 (1994), 212. doi: 10.1006/inco.1994.1009. Google Scholar

[33]

Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma and H. Li, Supervised rank aggregation,, in Proceedings of the 16th International Conference on World Wide Web, (2007), 481. doi: 10.1145/1242572.1242638. Google Scholar

[34]

L. Lü and T. Zhou, Link prediction in complex networks: A survey,, Physica A: Statistical Mechanics and its Applications, 390 (2011), 1150. doi: 10.1016/j.physa.2010.11.027. Google Scholar

[35]

A. K. Menon and C. Eklan, Link prediction via matrix factorization,, in Machine Learning and Knowledge Discovery in Databases (eds. D. Gunopulos, (6912), 437. doi: 10.1007/978-3-642-23783-6_28. Google Scholar

[36]

A. H. Mohammad and Z. M. J., A survey of link prediction in social networks,, in Social Network Data Analysis (ed. C. C. Aggarwal), (2010), 243. Google Scholar

[37]

M. Montague and J. A. Aslam, Condorcet fusion for improved retrieval,, in Proceedings of the Eleventh International Conference on Information and Knowledge Management, (2002), 538. doi: 10.1145/584879.584881. Google Scholar

[38]

M. E. J. Newman, Coauthorship networks and patterns of scientific collaboration,, Proceedings of the National Academy of Science of the United States (PNAS), 101 (2004), 5200. doi: 10.1073/pnas.0307545100. Google Scholar

[39]

Q. Ou, Y. D. Jin, T. Zhou, B. H. Wang and B. Q. Yin, Power-law strength-degree correlation from resource-allocation dynamics on weighted networks,, Phys. Rev. E, 75 (2007). doi: 10.1103/PhysRevE.75.021102. Google Scholar

[40]

M. Pujari and R. Kanawati, Supervised rank aggregation approach for link prediction in complex networks,, in WWW (Companion Volume) (eds. A. Mille, (2012), 1189. doi: 10.1145/2187980.2188260. Google Scholar

[41]

K. Subbian and P. Melville, Supervised rank aggregation for predicting influence in networks,, in Proceedings of the IEEE Conference on Social Computing (SocialCom-2011), (2011). Google Scholar

[42]

Y. Sun, R. Barber, M. Gupta, C. C. Aggarwa and J. Han, Co-Author Relationship Prediction in Heterogeneous Bibliographic Networks,, in Advances on Social Network Analysis and Mining (ASONAM), (2011), 121. doi: 10.1109/ASONAM.2011.112. Google Scholar

[43]

C. Wang, V. Satuluri and S. Parthasarathy, Local Probabilistic Models for Link Prediction,, in IEEE International Conference on Data Mining (ICDM) (eds. Y. Shi and C. W. Clifton), (2007), 322. doi: 10.1109/ICDM.2007.108. Google Scholar

[44]

H. Young and A. Levenglick, A consistent extension of condorcet's election principle,, SIAM Journal on Applied Mathematics, 35 (1978), 285. doi: 10.1137/0135023. Google Scholar

[45]

T. Zhou, L. Lu and Y.-C. Zhang, Predicting missing links via local information,, The European Physical Journal B, 71 (2009), 623. doi: 10.1140/epjb/e2009-00335-8. Google Scholar

show all references

References:
[1]

L. Adamic and E. Adar, Friends and neighbors on the Web,, Social Networks, 25 (2003), 211. doi: 10.1016/S0378-8733(03)00009-1. Google Scholar

[2]

L. A. Adamic, O. Buyukkokten and E. Adar, A social network caught in the Web,, First Monday, 8 (2003), 1995. doi: 10.5210/fm.v8i6.1057. Google Scholar

[3]

C. C. Aggarwal, Y. Xie and P. S. Yu, A framework for dynamic link prediction in heterogeneous networks,, Statistical Analysis and Data Mining, 7 (2014), 14. doi: 10.1002/sam.11198. Google Scholar

[4]

J. A. Aslam and M. Montague, Models for metasearch,, in Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, (2001), 276. doi: 10.1145/383952.384007. Google Scholar

[5]

A.-L. Barabási and R. Albert, Emergence of scaling in random networks,, Science, 286 (1999), 509. doi: 10.1126/science.286.5439.509. Google Scholar

[6]

F. Battiston, V. Nicosia and V. Latora, Metrics for the analysis of multiplex networks,, , (2013). Google Scholar

[7]

N. Benchettara, R. Kanawati and C. Rouveirol, Apprentissage supervisé pour la prédiction de nouveaux liens dans des réseaux sociaux bipartie,, in Actes da la 17iéme Rencontre de la société francophone de classification (SFC'2010), (2010), 63. Google Scholar

[8]

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale and D. Pedreschi, Foundations of Multidimensional Network Analysis,, in Advances in Social Networks Analysis and Mining (ASONAM), (2011), 485. doi: 10.1109/ASONAM.2011.103. Google Scholar

[9]

M. Berlingerio, M. Coscia, F. Giannotti, A. Monreale and D. Pedreschi, Multidimensional networks: Foundations of structural analysis,, World Wide Web, 16 (2013), 567. doi: 10.1007/s11280-012-0190-4. Google Scholar

[10]

D. Black, R. Newing, I. McLean, A. McMillan and B. Monroe, The Theory of Committees and Elections by Duncan Black, and Revised Second Editions Committee Decisions with Complementary Valuation by Duncan Black,, 2nd edition, (1998). Google Scholar

[11]

P. Brodka and P. Kazienko, Encyclopedia of Social Network Analysis and Mining,, chapter Multi-Layered Social Networks, (2014). Google Scholar

[12]

P. Chebotarev and E. Shamis, The matrix-Forest theorem and measuring relations in small social groups,, Automation and Remote Control, 58 (1997), 1505. Google Scholar

[13]

Y. Chevaleyre, U. Endriss, J. Lang and N. Maudet, A short introduction to computational social choice,, in SOFSEM 2007: Theory and Practice of Computer Science, (2007), 51. doi: 10.1007/978-3-540-69507-3_4. Google Scholar

[14]

D. A. Davis, R. Lichtenwalter and N. V. Chawla, Multi-relational link prediction in heterogeneous information networks,, in 2011 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), (2011), 281. doi: 10.1109/ASONAM.2011.107. Google Scholar

[15]

J.-C. de Borda, Memoire sur les Elections au Scrutin,, 1781., (). Google Scholar

[16]

Y. Dong, J. Tang, S. Wu, J. Tian, N. V. Chawla, J. Rao and H. Cao, Link prediction and recommendation across heterogeneous social networks,, in 2012 IEEE 12th International Conference on Data Mining (ICDM) (eds. M. J. Zaki, (2012), 181. doi: 10.1109/ICDM.2012.140. Google Scholar

[17]

C. Dwork, R.Kumar, M. Naor and D. Sivakumar, Rank aggregation methods for web,, in Proceedings of the 10th International Conference on World Wide Web, (2001), 613. doi: 10.1145/371920.372165. Google Scholar

[18]

C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation, spam resistance, and social choice,, in WWW '01: Proceedings of 10th International Conference on World Wide Web, (2001), 613. Google Scholar

[19]

F. Fouss, L. Yen, A. Pirotte and M. Saerens, An experimental investigation of graph kernels on a collaborative recommendation task,, in Sixth International Conference on Data Mining (ICDM'06), (2006), 863. doi: 10.1109/ICDM.2006.18. Google Scholar

[20]

S. Gao, L. Denoyer and P. Gallinari, Temporal link prediction by integrating content and structure information,, in Proceedings of the 20th ACM International Conference on Information and Knowledge Management - CIKM '11, (2011), 1169. doi: 10.1145/2063576.2063744. Google Scholar

[21]

M. A. Hasan, V. Chaoji, S. Salem and M. Zaki, Link prediction using supervised learning,, in Proc. of SDM 06 workshop on Link Analysis, (2006). Google Scholar

[22]

Z. Huang, X. Li and H. Chen, Link prediction approach to collaborative filtering,, in Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries (eds. M. Marlino, (2005), 141. doi: 10.1145/1065385.1065415. Google Scholar

[23]

P. Jaccard, Étude comparative de la distribution florale dans une portion des alpes et des jura,, Bulletin de la Société Vaudoise des Sciences Naturelles, 37 (1901), 547. Google Scholar

[24]

L. Katz, A new status index derived from socimetric analysis,, Psychmetrika, 18 (1953), 39. doi: 10.1007/BF02289026. Google Scholar

[25]

G. Kossinets, Effects of missing data in social networks,, Social Networks, 28 (2006), 247. doi: 10.1016/j.socnet.2005.07.002. Google Scholar

[26]

T.-T. Kuo, R. Yan, Y.-Y. Huang, P.-H. Kung and S.-D. Lin, Unsupervised link prediction using aggregative statistics on heterogeneous social networks,, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2013), 775. doi: 10.1145/2487575.2487614. Google Scholar

[27]

J. B. Lee and H. Adorna, Link prediction in a modified heterogeneous bibliographic network,, in ASONAM, (2012), 442. doi: 10.1109/ASONAM.2012.78. Google Scholar

[28]

D. Liben-Nowell and J. Kleinberg, The link prediction problem for social networks,, in Proceedings of the Twelfth International Conference on Information and Knowledge Management, (2003), 556. doi: 10.1145/956863.956972. Google Scholar

[29]

D. Liben-Nowell and J. M. Kleinberg, The link-prediction problem for social networks,, JASIST, 58 (2007), 1019. Google Scholar

[30]

R. N. Lichtenwalter, J. T. Lussier and N. V. Chawla, New perspectives and methods in link prediction,, in Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '10, (2010), 243. doi: 10.1145/1835804.1835837. Google Scholar

[31]

R. Lichtnwalter and N. Chawla, Link prediction: Fair and effective evaluation,, in 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), (2012), 376. doi: 10.1109/ASONAM.2012.68. Google Scholar

[32]

N. Littlestone and M. K. Warmuth, Weighted majority algorithm,, Information and Computation, 108 (1994), 212. doi: 10.1006/inco.1994.1009. Google Scholar

[33]

Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma and H. Li, Supervised rank aggregation,, in Proceedings of the 16th International Conference on World Wide Web, (2007), 481. doi: 10.1145/1242572.1242638. Google Scholar

[34]

L. Lü and T. Zhou, Link prediction in complex networks: A survey,, Physica A: Statistical Mechanics and its Applications, 390 (2011), 1150. doi: 10.1016/j.physa.2010.11.027. Google Scholar

[35]

A. K. Menon and C. Eklan, Link prediction via matrix factorization,, in Machine Learning and Knowledge Discovery in Databases (eds. D. Gunopulos, (6912), 437. doi: 10.1007/978-3-642-23783-6_28. Google Scholar

[36]

A. H. Mohammad and Z. M. J., A survey of link prediction in social networks,, in Social Network Data Analysis (ed. C. C. Aggarwal), (2010), 243. Google Scholar

[37]

M. Montague and J. A. Aslam, Condorcet fusion for improved retrieval,, in Proceedings of the Eleventh International Conference on Information and Knowledge Management, (2002), 538. doi: 10.1145/584879.584881. Google Scholar

[38]

M. E. J. Newman, Coauthorship networks and patterns of scientific collaboration,, Proceedings of the National Academy of Science of the United States (PNAS), 101 (2004), 5200. doi: 10.1073/pnas.0307545100. Google Scholar

[39]

Q. Ou, Y. D. Jin, T. Zhou, B. H. Wang and B. Q. Yin, Power-law strength-degree correlation from resource-allocation dynamics on weighted networks,, Phys. Rev. E, 75 (2007). doi: 10.1103/PhysRevE.75.021102. Google Scholar

[40]

M. Pujari and R. Kanawati, Supervised rank aggregation approach for link prediction in complex networks,, in WWW (Companion Volume) (eds. A. Mille, (2012), 1189. doi: 10.1145/2187980.2188260. Google Scholar

[41]

K. Subbian and P. Melville, Supervised rank aggregation for predicting influence in networks,, in Proceedings of the IEEE Conference on Social Computing (SocialCom-2011), (2011). Google Scholar

[42]

Y. Sun, R. Barber, M. Gupta, C. C. Aggarwa and J. Han, Co-Author Relationship Prediction in Heterogeneous Bibliographic Networks,, in Advances on Social Network Analysis and Mining (ASONAM), (2011), 121. doi: 10.1109/ASONAM.2011.112. Google Scholar

[43]

C. Wang, V. Satuluri and S. Parthasarathy, Local Probabilistic Models for Link Prediction,, in IEEE International Conference on Data Mining (ICDM) (eds. Y. Shi and C. W. Clifton), (2007), 322. doi: 10.1109/ICDM.2007.108. Google Scholar

[44]

H. Young and A. Levenglick, A consistent extension of condorcet's election principle,, SIAM Journal on Applied Mathematics, 35 (1978), 285. doi: 10.1137/0135023. Google Scholar

[45]

T. Zhou, L. Lu and Y.-C. Zhang, Predicting missing links via local information,, The European Physical Journal B, 71 (2009), 623. doi: 10.1140/epjb/e2009-00335-8. Google Scholar

[1]

Xianmin Geng, Shengli Zhou, Jiashan Tang, Cong Yang. A sufficient condition for classified networks to possess complex network features. Networks & Heterogeneous Media, 2012, 7 (1) : 59-69. doi: 10.3934/nhm.2012.7.59

[2]

David J. Aldous. A stochastic complex network model. Electronic Research Announcements, 2003, 9: 152-161.

[3]

Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i

[4]

Laltu Sardar, Sushmita Ruj. The secure link prediction problem. Advances in Mathematics of Communications, 2019, 13 (4) : 733-757. doi: 10.3934/amc.2019043

[5]

Santiago Moral, Victor Chapela, Regino Criado, Ángel Pérez, Miguel Romance. Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis. Networks & Heterogeneous Media, 2015, 10 (1) : 195-208. doi: 10.3934/nhm.2015.10.195

[6]

Lambertus A. Peletier, Xi-Ling Jiang, Snehal Samant, Stephan Schmidt. Analysis of a complex physiology-directed model for inhibition of platelet aggregation by clopidogrel. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 945-961. doi: 10.3934/dcds.2017039

[7]

Mark G. Burch, Karly A. Jacobsen, Joseph H. Tien, Grzegorz A. Rempała. Network-based analysis of a small Ebola outbreak. Mathematical Biosciences & Engineering, 2017, 14 (1) : 67-77. doi: 10.3934/mbe.2017005

[8]

Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control & Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521

[9]

Li Gang. An optimization detection algorithm for complex intrusion interference signal in mobile wireless network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1371-1384. doi: 10.3934/dcdss.2019094

[10]

Hong Man, Yibin Yu, Yuebang He, Hui Huang. Design of one type of linear network prediction controller for multi-agent system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 727-734. doi: 10.3934/dcdss.2019047

[11]

Tadahisa Funaki, Hirofumi Izuhara, Masayasu Mimura, Chiyori Urabe. A link between microscopic and macroscopic models of self-organized aggregation. Networks & Heterogeneous Media, 2012, 7 (4) : 705-740. doi: 10.3934/nhm.2012.7.705

[12]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[13]

Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis. Mathematical Biosciences & Engineering, 2005, 2 (3) : 473-485. doi: 10.3934/mbe.2005.2.473

[14]

Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355

[15]

Yacine Chitour, Frédéric Grognard, Georges Bastin. Equilibria and stability analysis of a branched metabolic network with feedback inhibition. Networks & Heterogeneous Media, 2006, 1 (1) : 219-239. doi: 10.3934/nhm.2006.1.219

[16]

Thomas Hillen, Peter Hinow, Zhi-An Wang. Mathematical analysis of a kinetic model for cell movement in network tissues. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1055-1080. doi: 10.3934/dcdsb.2010.14.1055

[17]

Bailey Kacsmar, Douglas R. Stinson. A network reliability approach to the analysis of combinatorial repairable threshold schemes. Advances in Mathematics of Communications, 2019, 13 (4) : 601-612. doi: 10.3934/amc.2019037

[18]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[19]

Yu-Hao Liang, Wan-Rou Wu, Jonq Juang. Fastest synchronized network and synchrony on the Julia set of complex-valued coupled map lattices. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 173-184. doi: 10.3934/dcdsb.2016.21.173

[20]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial & Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]