2015, 10(2): 401-419. doi: 10.3934/nhm.2015.10.401

Self-similar control systems and applications to zygodactyl bird's foot

1. 

Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sezione Matematica, Via A. Scarpa n.16 00161 Roma

2. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sezione di Matematica, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma

Received  September 2014 Revised  December 2014 Published  April 2015

We investigate a class of linear discrete control systems, modeling the controlled dynamics of planar manipulators as well as the skeletal dynamics of human fingers and bird's toes. A self-similarity assumption on the phalanxes allows to reinterpret the control field ruling the whole dynamics as an Iterated Function System. By exploiting this relation, we apply results coming from self-similar dynamics in order to give a geometrical description of the control system and, in particular, of its reachable set. This approach is then applied to the investigation of the zygodactyl phenomenon in birds, and in particular in parrots. This arrangement of the toes of a bird's foot, common in species living on trees, is a distribution of the foot with two toes facing forward and two back. Reachability and grasping configurations are then investigated. Finally an hybrid system modeling the owl's foot is introduced.
Citation: Anna Chiara Lai, Paola Loreti. Self-similar control systems and applications to zygodactyl bird's foot. Networks & Heterogeneous Media, 2015, 10 (2) : 401-419. doi: 10.3934/nhm.2015.10.401
References:
[1]

J. Baillieul, Avoiding obstacles and resolving kinematic redundancy,, IEEE International Conference on Robotics and Automation, 3 (1986), 1698.

[2]

M. F. Barnsley, Fractals Everywhere: New Edition,, Courier Dover Publications, (2013).

[3]

M. F. Barnsley and K. Leśniak, On the continuity of the Hutchinson operator,, preprint, (2012).

[4]

W. J. Bock, Functional and evolutionary morphology of woodpeckers,, Ostrich, 70 (1999), 23.

[5]

J. W. Burdick, Kinematic Analysis and Design of Redundant Robot Manipulators,, Diss. Stanford University, (1988).

[6]

G. S. Chirikjian and J. W. Burdick, An obstacle avoidance algorithm for hyper-redundant manipulators,, IEEE International Conference on Robotics and Automation, 1 (1990), 625. doi: 10.1109/ROBOT.1990.126052.

[7]

G. S. Chirikjian and J. W. Burdick, The kinematics of hyper-redundant robot locomotion,, IEEE Transactions on Robotics and Automation, 11 (1995), 781. doi: 10.1109/70.478426.

[8]

Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set,, Mathematics of Control, 14 (2001), 173. doi: 10.1007/PL00009881.

[9]

N. Dubbini, B. Piccoli and A. Bicchi, Left invertibility of discrete systems with finite inputs and quantised output,, International Journal of Control, 83 (2010), 798. doi: 10.1080/00207170903438069.

[10]

J. Hutchinson, Fractals and self-similarity,, Indiana Univ. J. Math., 30 (1981), 713. doi: 10.1512/iumj.1981.30.30055.

[11]

E.-U. Imme and G. S. Chirikjian, Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities,, in Proceedings of 1996 IEEE International Conference on Robotics and Automation. Vol. 1, (1996), 139.

[12]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases,, Mathematical Research Letters, 8 (2001), 535. doi: 10.4310/MRL.2001.v8.n4.a12.

[13]

V. Komornik, A. C. Lai and M. Pedicini, Generalized golden ratios of ternary alphabets,, J. Eur. Math. Soc., 13 (2011), 1113. doi: 10.4171/JEMS/277.

[14]

V. Komornik and P. Loreti, Unique developments in non-integer bases,, American Mathematical Monthly, 105 (1998), 636. doi: 10.2307/2589246.

[15]

A. C. Lai and P. Loreti, Robot's finger and expansions in non-integer bases,, Networks and Heterogeneus Media, 7 (2012), 71. doi: 10.3934/nhm.2012.7.71.

[16]

A. C. Lai and P. Loreti, From discrete to continuous reachability for a robot's finger model,, Communications in Industrial and Applied Mathematics, 3 (2012).

[17]

M. D. Lichter, V. A. Sujan and S. Dubowsky, Computational issues in the planning and kinematics of binary robots,, in Proceedings of ICRA'02 IEEE International Conference on Robotics and Automation. Vol. 1, (2002), 341. doi: 10.1109/ROBOT.2002.1013384.

[18]

L. Mederreg, et al., The RoboCoq Project: Modelling and Design of Bird-like Robot,, 6th International Conference on Climbing and Walking Robots, (2003).

[19]

A. Mihail and R. Miculescu, The shift space for an infinite iterated function system,, Math. Rep. (Bucur.), 11 (2009), 21.

[20]

B. Mishra, Grasp Metrics: Optimality and Complexity,, Proceedings of the Workshop on Algorithmic Foundations of Robotics, (1995).

[21]

R. Norberg, Treecreeper climbing, mechanics, energetics, and structural adaptations,, Ornis Scandinavica, (1986), 191.

[22]

M. Pedicini, Greedy expansions and sets with deleted digits,, Theoretical Computer Science, 332 (2005), 313. doi: 10.1016/j.tcs.2004.11.002.

[23]

Y. Peres, M. Rams, K. Simon and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets,, Proceedings of the American Mathematical Society, 129 (2001), 2689. doi: 10.1090/S0002-9939-01-05969-X.

[24]

T. Quinn and J. Baumel, The digital tendon locking mechanism of the avian foot (Aves),, Zoomorphology, 109 (1990), 281. doi: 10.1007/BF00312195.

[25]

N. A. Secelean, Masura si Fractali,, Univ. Lucian Blaga, (2002).

[26]

D. Sustaita, et al., Getting a Grip on Tetrapod Grasping: Form, Function, and Evolution,, Biological Reviews, 88 (2013), 380.

[27]

A. V. Zinoviev and F. Ya Dzerzhinsky, Some general notes on the avian hindlimb biomechanics,, Bulletin of Moscow Society of Naturalists, 105 (2000).

show all references

References:
[1]

J. Baillieul, Avoiding obstacles and resolving kinematic redundancy,, IEEE International Conference on Robotics and Automation, 3 (1986), 1698.

[2]

M. F. Barnsley, Fractals Everywhere: New Edition,, Courier Dover Publications, (2013).

[3]

M. F. Barnsley and K. Leśniak, On the continuity of the Hutchinson operator,, preprint, (2012).

[4]

W. J. Bock, Functional and evolutionary morphology of woodpeckers,, Ostrich, 70 (1999), 23.

[5]

J. W. Burdick, Kinematic Analysis and Design of Redundant Robot Manipulators,, Diss. Stanford University, (1988).

[6]

G. S. Chirikjian and J. W. Burdick, An obstacle avoidance algorithm for hyper-redundant manipulators,, IEEE International Conference on Robotics and Automation, 1 (1990), 625. doi: 10.1109/ROBOT.1990.126052.

[7]

G. S. Chirikjian and J. W. Burdick, The kinematics of hyper-redundant robot locomotion,, IEEE Transactions on Robotics and Automation, 11 (1995), 781. doi: 10.1109/70.478426.

[8]

Y. Chitour and B. Piccoli, Controllability for discrete systems with a finite control set,, Mathematics of Control, 14 (2001), 173. doi: 10.1007/PL00009881.

[9]

N. Dubbini, B. Piccoli and A. Bicchi, Left invertibility of discrete systems with finite inputs and quantised output,, International Journal of Control, 83 (2010), 798. doi: 10.1080/00207170903438069.

[10]

J. Hutchinson, Fractals and self-similarity,, Indiana Univ. J. Math., 30 (1981), 713. doi: 10.1512/iumj.1981.30.30055.

[11]

E.-U. Imme and G. S. Chirikjian, Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities,, in Proceedings of 1996 IEEE International Conference on Robotics and Automation. Vol. 1, (1996), 139.

[12]

P. Glendinning and N. Sidorov, Unique representations of real numbers in non-integer bases,, Mathematical Research Letters, 8 (2001), 535. doi: 10.4310/MRL.2001.v8.n4.a12.

[13]

V. Komornik, A. C. Lai and M. Pedicini, Generalized golden ratios of ternary alphabets,, J. Eur. Math. Soc., 13 (2011), 1113. doi: 10.4171/JEMS/277.

[14]

V. Komornik and P. Loreti, Unique developments in non-integer bases,, American Mathematical Monthly, 105 (1998), 636. doi: 10.2307/2589246.

[15]

A. C. Lai and P. Loreti, Robot's finger and expansions in non-integer bases,, Networks and Heterogeneus Media, 7 (2012), 71. doi: 10.3934/nhm.2012.7.71.

[16]

A. C. Lai and P. Loreti, From discrete to continuous reachability for a robot's finger model,, Communications in Industrial and Applied Mathematics, 3 (2012).

[17]

M. D. Lichter, V. A. Sujan and S. Dubowsky, Computational issues in the planning and kinematics of binary robots,, in Proceedings of ICRA'02 IEEE International Conference on Robotics and Automation. Vol. 1, (2002), 341. doi: 10.1109/ROBOT.2002.1013384.

[18]

L. Mederreg, et al., The RoboCoq Project: Modelling and Design of Bird-like Robot,, 6th International Conference on Climbing and Walking Robots, (2003).

[19]

A. Mihail and R. Miculescu, The shift space for an infinite iterated function system,, Math. Rep. (Bucur.), 11 (2009), 21.

[20]

B. Mishra, Grasp Metrics: Optimality and Complexity,, Proceedings of the Workshop on Algorithmic Foundations of Robotics, (1995).

[21]

R. Norberg, Treecreeper climbing, mechanics, energetics, and structural adaptations,, Ornis Scandinavica, (1986), 191.

[22]

M. Pedicini, Greedy expansions and sets with deleted digits,, Theoretical Computer Science, 332 (2005), 313. doi: 10.1016/j.tcs.2004.11.002.

[23]

Y. Peres, M. Rams, K. Simon and B. Solomyak, Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets,, Proceedings of the American Mathematical Society, 129 (2001), 2689. doi: 10.1090/S0002-9939-01-05969-X.

[24]

T. Quinn and J. Baumel, The digital tendon locking mechanism of the avian foot (Aves),, Zoomorphology, 109 (1990), 281. doi: 10.1007/BF00312195.

[25]

N. A. Secelean, Masura si Fractali,, Univ. Lucian Blaga, (2002).

[26]

D. Sustaita, et al., Getting a Grip on Tetrapod Grasping: Form, Function, and Evolution,, Biological Reviews, 88 (2013), 380.

[27]

A. V. Zinoviev and F. Ya Dzerzhinsky, Some general notes on the avian hindlimb biomechanics,, Bulletin of Moscow Society of Naturalists, 105 (2000).

[1]

Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

[2]

Thomas Jordan, Mark Pollicott. The Hausdorff dimension of measures for iterated function systems which contract on average. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 235-246. doi: 10.3934/dcds.2008.22.235

[3]

Pablo G. Barrientos, Abbas Fakhari, Aliasghar Sarizadeh. Density of fiberwise orbits in minimal iterated function systems on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3341-3352. doi: 10.3934/dcds.2014.34.3341

[4]

David Cheban, Cristiana Mammana. Continuous dependence of attractors on parameters of non-autonomous dynamical systems and infinite iterated function systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 499-515. doi: 10.3934/dcds.2007.18.499

[5]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial & Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[6]

Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control & Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195

[7]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[8]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[9]

Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535

[10]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[11]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[12]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[13]

Xingwu Chen, Weinian Zhang. Normal forms of planar switching systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6715-6736. doi: 10.3934/dcds.2016092

[14]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[15]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[16]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[17]

Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723

[18]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713-726. doi: 10.3934/jimo.2008.4.713

[19]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[20]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]