-
Previous Article
Integrating release and dispatch policies in production models
- NHM Home
- This Issue
-
Next Article
A model of riots dynamics: Shocks, diffusion and thresholds
Opinion dynamics under the influence of radical groups, charismatic leaders, and other constant signals: A simple unifying model
1. | Bayreuth University, Universitaetsstrasse 30, 95440 Bayreuth, Germany |
2. | Bremen University, Bibliotheksstrasse 1, 28359 Bremen, Germany |
References:
[1] |
D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks,, Dynamic Games and Applications, 1 (2011), 3.
doi: 10.1007/s13235-010-0004-1. |
[2] |
M. Baurmann, G. Betz and R. Cramm, Meinungsdynamiken in fundamentalistischen Gruppen - Erklärungshypothesen auf der Basis von Simulationsmodellen,, Analyse and Kritik, 36 (2014), 61. Google Scholar |
[3] |
V. D. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications,, SIAM Journal on Control and Optimization, 48 (2010), 5214.
doi: 10.1137/090766188. |
[4] |
B. Chazelle, The total s-energy of a multiagent system,, SIAM Journal of Control and Optimization, 49 (2011), 1680.
doi: 10.1137/100791671. |
[5] |
G. Deffuant, F. Amblard, G. Weisbuch and T. Faure, How can extremism prevail? A study based on the relative agreement interaction model,, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar |
[6] |
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents,, Advances in Complex Systems, 3 (2000), 87.
doi: 10.1142/S0219525900000078. |
[7] |
M. H. DeGroot, Reaching a consensus,, Journal of the American Statistical Association, 69 (1974), 118.
doi: 10.1080/01621459.1974.10480137. |
[8] |
R. Hegselmann, Bounded confidence, radical groups, and charismatic leaders,, in Advances in Computational Social Science and Social Simulation. Proceedings of the Social Simulation Conference 2014 Barcelona, (2014), 217. Google Scholar |
[9] |
R. Hegselmann, S. König, S. Kurz, C. Niemann and J. Rambau, Optimal opinion control: The campaign problem,, Journal of Artificial Societies and Social Simulation (JASSS), (2015).
doi: 10.2139/ssrn.2516866. |
[10] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation,, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar |
[11] |
R. Hegselmann and U. Krause, Truth and cognitive division of labour: First steps towards a computer aided social epistemology,, Journal of Artificial Societies and Social Simulation, 9 (2006). Google Scholar |
[12] |
S. Huet, G. Deffuant and W. Jager, Rejection mechanism in 2d bounded confidence provides more conformity,, Advances in Complex Systems, 11 (2008), 529.
doi: 10.1142/S0219525908001799. |
[13] |
U. Krause, Positive Dynamical Systems in Discrete Time. Theory, Models, and Applications,, De Gruyter, (2015).
doi: 10.1515/9783110365696. |
[14] |
S. Kurz and J. Rambau, On the Hegselmann-Krause conjecture in opinion dynamics,, Journal of Difference Equations and Applications, 17 (2011), 859.
doi: 10.1080/10236190903443129. |
[15] |
J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.
doi: 10.1142/S0129183107011789. |
[16] |
N. Oreskes and E. M. Conway, Merchants of Doubt - How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming,, Bloomsbury Press, (2010). Google Scholar |
[17] |
G. G. Polhill, L. R. Izquierdo and N. M. Gotts, The ghost in the model (and other effects of floating point arithmetic),, Journal of Artificial Societies and Social Simulation, 8 (2005). Google Scholar |
[18] |
S. Wongkaew, M. Caponigro and A. Borzí, On the control through leadership of the Hegselmann-Krause opinion formation model,, Mathematical Models and Methods in Applied Sciences, 25 (2015), 565.
doi: 10.1142/S0218202515400060. |
[19] |
H. Xia, H. Wang and Z. Xuan, Opinion dynamics: A multidisciplinary review and perspective on future research,, International Journal of Knowledge and Systems Science, 2 (2011), 72.
doi: 10.4018/978-1-4666-3998-0.ch021. |
show all references
References:
[1] |
D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks,, Dynamic Games and Applications, 1 (2011), 3.
doi: 10.1007/s13235-010-0004-1. |
[2] |
M. Baurmann, G. Betz and R. Cramm, Meinungsdynamiken in fundamentalistischen Gruppen - Erklärungshypothesen auf der Basis von Simulationsmodellen,, Analyse and Kritik, 36 (2014), 61. Google Scholar |
[3] |
V. D. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications,, SIAM Journal on Control and Optimization, 48 (2010), 5214.
doi: 10.1137/090766188. |
[4] |
B. Chazelle, The total s-energy of a multiagent system,, SIAM Journal of Control and Optimization, 49 (2011), 1680.
doi: 10.1137/100791671. |
[5] |
G. Deffuant, F. Amblard, G. Weisbuch and T. Faure, How can extremism prevail? A study based on the relative agreement interaction model,, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar |
[6] |
G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents,, Advances in Complex Systems, 3 (2000), 87.
doi: 10.1142/S0219525900000078. |
[7] |
M. H. DeGroot, Reaching a consensus,, Journal of the American Statistical Association, 69 (1974), 118.
doi: 10.1080/01621459.1974.10480137. |
[8] |
R. Hegselmann, Bounded confidence, radical groups, and charismatic leaders,, in Advances in Computational Social Science and Social Simulation. Proceedings of the Social Simulation Conference 2014 Barcelona, (2014), 217. Google Scholar |
[9] |
R. Hegselmann, S. König, S. Kurz, C. Niemann and J. Rambau, Optimal opinion control: The campaign problem,, Journal of Artificial Societies and Social Simulation (JASSS), (2015).
doi: 10.2139/ssrn.2516866. |
[10] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation,, Journal of Artificial Societies and Social Simulation, 5 (2002). Google Scholar |
[11] |
R. Hegselmann and U. Krause, Truth and cognitive division of labour: First steps towards a computer aided social epistemology,, Journal of Artificial Societies and Social Simulation, 9 (2006). Google Scholar |
[12] |
S. Huet, G. Deffuant and W. Jager, Rejection mechanism in 2d bounded confidence provides more conformity,, Advances in Complex Systems, 11 (2008), 529.
doi: 10.1142/S0219525908001799. |
[13] |
U. Krause, Positive Dynamical Systems in Discrete Time. Theory, Models, and Applications,, De Gruyter, (2015).
doi: 10.1515/9783110365696. |
[14] |
S. Kurz and J. Rambau, On the Hegselmann-Krause conjecture in opinion dynamics,, Journal of Difference Equations and Applications, 17 (2011), 859.
doi: 10.1080/10236190903443129. |
[15] |
J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.
doi: 10.1142/S0129183107011789. |
[16] |
N. Oreskes and E. M. Conway, Merchants of Doubt - How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming,, Bloomsbury Press, (2010). Google Scholar |
[17] |
G. G. Polhill, L. R. Izquierdo and N. M. Gotts, The ghost in the model (and other effects of floating point arithmetic),, Journal of Artificial Societies and Social Simulation, 8 (2005). Google Scholar |
[18] |
S. Wongkaew, M. Caponigro and A. Borzí, On the control through leadership of the Hegselmann-Krause opinion formation model,, Mathematical Models and Methods in Applied Sciences, 25 (2015), 565.
doi: 10.1142/S0218202515400060. |
[19] |
H. Xia, H. Wang and Z. Xuan, Opinion dynamics: A multidisciplinary review and perspective on future research,, International Journal of Knowledge and Systems Science, 2 (2011), 72.
doi: 10.4018/978-1-4666-3998-0.ch021. |
[1] |
Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048 |
[2] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[3] |
Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021003 |
[4] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[5] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[6] |
Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280 |
[7] |
Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034 |
[8] |
Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333 |
[9] |
Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301 |
[10] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[11] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[12] |
Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020362 |
[13] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[14] |
Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020316 |
[15] |
Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020045 |
[16] |
Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020339 |
[17] |
Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116 |
[18] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020426 |
[19] |
Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085 |
[20] |
Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020360 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]