September  2015, 10(3): 477-509. doi: 10.3934/nhm.2015.10.477

Opinion dynamics under the influence of radical groups, charismatic leaders, and other constant signals: A simple unifying model

1. 

Bayreuth University, Universitaetsstrasse 30, 95440 Bayreuth, Germany

2. 

Bremen University, Bibliotheksstrasse 1, 28359 Bremen, Germany

Received  December 2014 Revised  March 2015 Published  July 2015

By a simple extension of the bounded confidence model, it is possible to model the influence of a radical group, or a charismatic leader on the opinion dynamics of `normal' agents that update their opinions under both, the influence of their normal peers, and the additional influence of the radical group or a charismatic leader. From a more abstract point of view, we model the influence of a signal, that is constant, may have different intensities, and is `heard' only by agents with opinions, that are not too far away. For such a dynamic a Constant Signal Theorem is proven. In the model we get a lot of surprising effects. For instance, the more intensive signal may have less effect; more radicals may lead to less radicalization of normal agents. The model is an extremely simple conceptual model. Under some assumptions the whole parameter space can be analyzed. The model inspires new possible explanations, new perspectives for empirical studies, and new ideas for prevention or intervention policies.
Citation: Rainer Hegselmann, Ulrich Krause. Opinion dynamics under the influence of radical groups, charismatic leaders, and other constant signals: A simple unifying model. Networks & Heterogeneous Media, 2015, 10 (3) : 477-509. doi: 10.3934/nhm.2015.10.477
References:
[1]

D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks,, Dynamic Games and Applications, 1 (2011), 3.  doi: 10.1007/s13235-010-0004-1.  Google Scholar

[2]

M. Baurmann, G. Betz and R. Cramm, Meinungsdynamiken in fundamentalistischen Gruppen - Erklärungshypothesen auf der Basis von Simulationsmodellen,, Analyse and Kritik, 36 (2014), 61.   Google Scholar

[3]

V. D. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications,, SIAM Journal on Control and Optimization, 48 (2010), 5214.  doi: 10.1137/090766188.  Google Scholar

[4]

B. Chazelle, The total s-energy of a multiagent system,, SIAM Journal of Control and Optimization, 49 (2011), 1680.  doi: 10.1137/100791671.  Google Scholar

[5]

G. Deffuant, F. Amblard, G. Weisbuch and T. Faure, How can extremism prevail? A study based on the relative agreement interaction model,, Journal of Artificial Societies and Social Simulation, 5 (2002).   Google Scholar

[6]

G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents,, Advances in Complex Systems, 3 (2000), 87.  doi: 10.1142/S0219525900000078.  Google Scholar

[7]

M. H. DeGroot, Reaching a consensus,, Journal of the American Statistical Association, 69 (1974), 118.  doi: 10.1080/01621459.1974.10480137.  Google Scholar

[8]

R. Hegselmann, Bounded confidence, radical groups, and charismatic leaders,, in Advances in Computational Social Science and Social Simulation. Proceedings of the Social Simulation Conference 2014 Barcelona, (2014), 217.   Google Scholar

[9]

R. Hegselmann, S. König, S. Kurz, C. Niemann and J. Rambau, Optimal opinion control: The campaign problem,, Journal of Artificial Societies and Social Simulation (JASSS), (2015).  doi: 10.2139/ssrn.2516866.  Google Scholar

[10]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation,, Journal of Artificial Societies and Social Simulation, 5 (2002).   Google Scholar

[11]

R. Hegselmann and U. Krause, Truth and cognitive division of labour: First steps towards a computer aided social epistemology,, Journal of Artificial Societies and Social Simulation, 9 (2006).   Google Scholar

[12]

S. Huet, G. Deffuant and W. Jager, Rejection mechanism in 2d bounded confidence provides more conformity,, Advances in Complex Systems, 11 (2008), 529.  doi: 10.1142/S0219525908001799.  Google Scholar

[13]

U. Krause, Positive Dynamical Systems in Discrete Time. Theory, Models, and Applications,, De Gruyter, (2015).  doi: 10.1515/9783110365696.  Google Scholar

[14]

S. Kurz and J. Rambau, On the Hegselmann-Krause conjecture in opinion dynamics,, Journal of Difference Equations and Applications, 17 (2011), 859.  doi: 10.1080/10236190903443129.  Google Scholar

[15]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.  doi: 10.1142/S0129183107011789.  Google Scholar

[16]

N. Oreskes and E. M. Conway, Merchants of Doubt - How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming,, Bloomsbury Press, (2010).   Google Scholar

[17]

G. G. Polhill, L. R. Izquierdo and N. M. Gotts, The ghost in the model (and other effects of floating point arithmetic),, Journal of Artificial Societies and Social Simulation, 8 (2005).   Google Scholar

[18]

S. Wongkaew, M. Caponigro and A. Borzí, On the control through leadership of the Hegselmann-Krause opinion formation model,, Mathematical Models and Methods in Applied Sciences, 25 (2015), 565.  doi: 10.1142/S0218202515400060.  Google Scholar

[19]

H. Xia, H. Wang and Z. Xuan, Opinion dynamics: A multidisciplinary review and perspective on future research,, International Journal of Knowledge and Systems Science, 2 (2011), 72.  doi: 10.4018/978-1-4666-3998-0.ch021.  Google Scholar

show all references

References:
[1]

D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks,, Dynamic Games and Applications, 1 (2011), 3.  doi: 10.1007/s13235-010-0004-1.  Google Scholar

[2]

M. Baurmann, G. Betz and R. Cramm, Meinungsdynamiken in fundamentalistischen Gruppen - Erklärungshypothesen auf der Basis von Simulationsmodellen,, Analyse and Kritik, 36 (2014), 61.   Google Scholar

[3]

V. D. Blondel, J. M. Hendrickx and J. N. Tsitsiklis, Continuous-time average-preserving opinion dynamics with opinion-dependent communications,, SIAM Journal on Control and Optimization, 48 (2010), 5214.  doi: 10.1137/090766188.  Google Scholar

[4]

B. Chazelle, The total s-energy of a multiagent system,, SIAM Journal of Control and Optimization, 49 (2011), 1680.  doi: 10.1137/100791671.  Google Scholar

[5]

G. Deffuant, F. Amblard, G. Weisbuch and T. Faure, How can extremism prevail? A study based on the relative agreement interaction model,, Journal of Artificial Societies and Social Simulation, 5 (2002).   Google Scholar

[6]

G. Deffuant, D. Neau, F. Amblard and G. Weisbuch, Mixing beliefs among interacting agents,, Advances in Complex Systems, 3 (2000), 87.  doi: 10.1142/S0219525900000078.  Google Scholar

[7]

M. H. DeGroot, Reaching a consensus,, Journal of the American Statistical Association, 69 (1974), 118.  doi: 10.1080/01621459.1974.10480137.  Google Scholar

[8]

R. Hegselmann, Bounded confidence, radical groups, and charismatic leaders,, in Advances in Computational Social Science and Social Simulation. Proceedings of the Social Simulation Conference 2014 Barcelona, (2014), 217.   Google Scholar

[9]

R. Hegselmann, S. König, S. Kurz, C. Niemann and J. Rambau, Optimal opinion control: The campaign problem,, Journal of Artificial Societies and Social Simulation (JASSS), (2015).  doi: 10.2139/ssrn.2516866.  Google Scholar

[10]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation,, Journal of Artificial Societies and Social Simulation, 5 (2002).   Google Scholar

[11]

R. Hegselmann and U. Krause, Truth and cognitive division of labour: First steps towards a computer aided social epistemology,, Journal of Artificial Societies and Social Simulation, 9 (2006).   Google Scholar

[12]

S. Huet, G. Deffuant and W. Jager, Rejection mechanism in 2d bounded confidence provides more conformity,, Advances in Complex Systems, 11 (2008), 529.  doi: 10.1142/S0219525908001799.  Google Scholar

[13]

U. Krause, Positive Dynamical Systems in Discrete Time. Theory, Models, and Applications,, De Gruyter, (2015).  doi: 10.1515/9783110365696.  Google Scholar

[14]

S. Kurz and J. Rambau, On the Hegselmann-Krause conjecture in opinion dynamics,, Journal of Difference Equations and Applications, 17 (2011), 859.  doi: 10.1080/10236190903443129.  Google Scholar

[15]

J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey,, International Journal of Modern Physics C, 18 (2007), 1819.  doi: 10.1142/S0129183107011789.  Google Scholar

[16]

N. Oreskes and E. M. Conway, Merchants of Doubt - How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming,, Bloomsbury Press, (2010).   Google Scholar

[17]

G. G. Polhill, L. R. Izquierdo and N. M. Gotts, The ghost in the model (and other effects of floating point arithmetic),, Journal of Artificial Societies and Social Simulation, 8 (2005).   Google Scholar

[18]

S. Wongkaew, M. Caponigro and A. Borzí, On the control through leadership of the Hegselmann-Krause opinion formation model,, Mathematical Models and Methods in Applied Sciences, 25 (2015), 565.  doi: 10.1142/S0218202515400060.  Google Scholar

[19]

H. Xia, H. Wang and Z. Xuan, Opinion dynamics: A multidisciplinary review and perspective on future research,, International Journal of Knowledge and Systems Science, 2 (2011), 72.  doi: 10.4018/978-1-4666-3998-0.ch021.  Google Scholar

[1]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[2]

Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052

[3]

Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021003

[4]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[5]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[6]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, 2021, 20 (2) : 547-558. doi: 10.3934/cpaa.2020280

[7]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[8]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[9]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[10]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[11]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[12]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[13]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[14]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[15]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[18]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[19]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[20]

Rong Wang, Yihong Du. Long-time dynamics of a diffusive epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020360

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (170)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]