March  2015, 10(1): 53-70. doi: 10.3934/nhm.2015.10.53

A simple and bounded model of population dynamics for mutualistic networks

1. 

Complex System Group, Technical University of Madrid, Av. Puerta Hierro 4, 28040-Madrid

2. 

Área de Biodiversidad y Conservación, Dept. Biología y Geología, Universidad Rey Juan Carlos, 28933 Móstoles, Spain

3. 

Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), 07122 Palma de Mallorca

Received  July 2014 Revised  November 2014 Published  February 2015

Dynamic population models are based on the Verhulst's equation (logisitic equation), where the classic Malthusian growth rate is damped by intraspecific competition terms. Mainstream population models for mutualism are modifications of the logistic equation with additional terms to account for the benefits produced by the interspecies interactions. These models have shortcomings as the population divergence under some conditions (May's equations) or a mathematical complexity that difficults their analytical treatment (Wright's type II models). In this work, we introduce a model for the population dynamics in mutualism inspired by the logistic equation but cured of divergences. The model is also mathematically more simple than the type II. We use numerical simulations to study the model stability in more general interaction scenarios. Despite its simplicity, our results suggest that the model dynamics are rich and may be used to gain further insights in the dynamics of mutualistic interactions.
Citation: Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53
References:
[1]

D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases,, Proceedings of the National Academy of Sciences USA, 106 (2009), 21484.  doi: 10.1073/pnas.0906910106.  Google Scholar

[2]

J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity,, The Annual Review of Ecology, 38 (2007), 567.  doi: 10.1146/annurev.ecolsys.38.091206.095818.  Google Scholar

[3]

U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity,, Nature, 458 (2009), 1018.  doi: 10.1038/nature07950.  Google Scholar

[4]

U. Bastolla, M. Lässig, S. C. Manrubia and A. Valleriani, Biodiversity in model ecosystems, II: Species assembly and food web structure,, Journal of Theoretical Biology, 235 (2005), 531.  doi: 10.1016/j.jtbi.2005.02.006.  Google Scholar

[5]

W. Feller, On the logistic law of growth and its empirical verifications in biology,, Acta Biotheoretica, 5 (1940), 51.  doi: 10.1007/BF01602862.  Google Scholar

[6]

J. P. Gabriel, F. Saucy and L. F. Bersier, Paradoxes in the logistic equation?,, Ecological Modelling, 185 (2005), 147.  doi: 10.1016/j.ecolmodel.2004.10.009.  Google Scholar

[7]

J. R. Groff, Exploring dynamical systems and chaos using the logistic map model of population change,, American Journal of Physics, 81 (2013), 725.  doi: 10.1119/1.4813114.  Google Scholar

[8]

L. Gustafsson and M. Sternad, Bringing consistency to simulation of population models-Poisson simulation as a bridge between micro and macro simulation,, Mathematical Biosciences, 209 (2007), 361.  doi: 10.1016/j.mbs.2007.02.004.  Google Scholar

[9]

C. A. Johnson and P. Amarasekare, Competitionfor benefits can promote the persistence of mutualistics interactions,, Journal of Theoretical Biology, 328 (2013), 54.  doi: 10.1016/j.jtbi.2013.03.016.  Google Scholar

[10]

E. Kuno, Some strange properties of the logistic equation defined with r and k: Inherent defects or artifacts?,, Researches on population ecology, 14 (1991), 33.   Google Scholar

[11]

T. R. Malthus, An Essay on the Principle of Population or a View of Its Past and Present Effects on Human Happiness; with an Inquiry into Our Prospects Respecting the Future Removal on Mitigation of the Evils which It Occasions,, 1st edition, (1798).   Google Scholar

[12]

R. May, Models for two interacting populations,, in Theoretical Ecology. Principles and Applications, (1981), 78.   Google Scholar

[13]

J. D. Murray, Mathematical Biology I: An Introduction,, $3^{rd}$ edition, (2002).   Google Scholar

[14]

R. Pearl, The biology of population growth,, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 49 (1929), 336.  doi: 10.1007/BF01847581.  Google Scholar

[15]

E. Stokstad, Will malthus continue to be wrong?,, Science, 309 (2005).  doi: 10.1126/science.309.5731.102.  Google Scholar

[16]

P. F. Verhulst, Recherches mathematiques sur la loi d'accroissement de la population [Mathematical researches into the law of population growth increase],, Nouveaux Memoires de l'Academie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1.   Google Scholar

[17]

V. Volterra, Fluctuations in the abundance of a species considered mathematically,, Nature, 118 (1926), 558.  doi: 10.1038/118558a0.  Google Scholar

[18]

D. H. Wright, A simple, stable model of mutualism incorporating handling time,, The American Naturalist, 134 (1989), 664.  doi: 10.1086/285003.  Google Scholar

show all references

References:
[1]

D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J. J. Ramasco and A. Vespignani, Multiscale mobility networks and the spatial spreading of infectious diseases,, Proceedings of the National Academy of Sciences USA, 106 (2009), 21484.  doi: 10.1073/pnas.0906910106.  Google Scholar

[2]

J. Bascompte and P. Jordano, Plant-animal mutualistic networks: The architecture of biodiversity,, The Annual Review of Ecology, 38 (2007), 567.  doi: 10.1146/annurev.ecolsys.38.091206.095818.  Google Scholar

[3]

U. Bastolla, M. A. Fortuna, A. Pascual-García, A. Ferrera, B. Luque and J. Bascompte, The architecture of mutualistic networks minimizes competition and increases biodiversity,, Nature, 458 (2009), 1018.  doi: 10.1038/nature07950.  Google Scholar

[4]

U. Bastolla, M. Lässig, S. C. Manrubia and A. Valleriani, Biodiversity in model ecosystems, II: Species assembly and food web structure,, Journal of Theoretical Biology, 235 (2005), 531.  doi: 10.1016/j.jtbi.2005.02.006.  Google Scholar

[5]

W. Feller, On the logistic law of growth and its empirical verifications in biology,, Acta Biotheoretica, 5 (1940), 51.  doi: 10.1007/BF01602862.  Google Scholar

[6]

J. P. Gabriel, F. Saucy and L. F. Bersier, Paradoxes in the logistic equation?,, Ecological Modelling, 185 (2005), 147.  doi: 10.1016/j.ecolmodel.2004.10.009.  Google Scholar

[7]

J. R. Groff, Exploring dynamical systems and chaos using the logistic map model of population change,, American Journal of Physics, 81 (2013), 725.  doi: 10.1119/1.4813114.  Google Scholar

[8]

L. Gustafsson and M. Sternad, Bringing consistency to simulation of population models-Poisson simulation as a bridge between micro and macro simulation,, Mathematical Biosciences, 209 (2007), 361.  doi: 10.1016/j.mbs.2007.02.004.  Google Scholar

[9]

C. A. Johnson and P. Amarasekare, Competitionfor benefits can promote the persistence of mutualistics interactions,, Journal of Theoretical Biology, 328 (2013), 54.  doi: 10.1016/j.jtbi.2013.03.016.  Google Scholar

[10]

E. Kuno, Some strange properties of the logistic equation defined with r and k: Inherent defects or artifacts?,, Researches on population ecology, 14 (1991), 33.   Google Scholar

[11]

T. R. Malthus, An Essay on the Principle of Population or a View of Its Past and Present Effects on Human Happiness; with an Inquiry into Our Prospects Respecting the Future Removal on Mitigation of the Evils which It Occasions,, 1st edition, (1798).   Google Scholar

[12]

R. May, Models for two interacting populations,, in Theoretical Ecology. Principles and Applications, (1981), 78.   Google Scholar

[13]

J. D. Murray, Mathematical Biology I: An Introduction,, $3^{rd}$ edition, (2002).   Google Scholar

[14]

R. Pearl, The biology of population growth,, Zeitschrift für Induktive Abstammungs- und Vererbungslehre, 49 (1929), 336.  doi: 10.1007/BF01847581.  Google Scholar

[15]

E. Stokstad, Will malthus continue to be wrong?,, Science, 309 (2005).  doi: 10.1126/science.309.5731.102.  Google Scholar

[16]

P. F. Verhulst, Recherches mathematiques sur la loi d'accroissement de la population [Mathematical researches into the law of population growth increase],, Nouveaux Memoires de l'Academie Royale des Sciences et Belles-Lettres de Bruxelles, 18 (1845), 1.   Google Scholar

[17]

V. Volterra, Fluctuations in the abundance of a species considered mathematically,, Nature, 118 (1926), 558.  doi: 10.1038/118558a0.  Google Scholar

[18]

D. H. Wright, A simple, stable model of mutualism incorporating handling time,, The American Naturalist, 134 (1989), 664.  doi: 10.1086/285003.  Google Scholar

[1]

Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269

[2]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[3]

Juan Manuel Pastor, Javier García-Algarra, José M. Iriondo, José J. Ramasco, Javier Galeano. Dragging in mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 37-52. doi: 10.3934/nhm.2015.10.37

[4]

Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021005

[5]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[6]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[7]

Simone Calogero, Juan Calvo, Óscar Sánchez, Juan Soler. Dispersive behavior in galactic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 1-16. doi: 10.3934/dcdsb.2010.14.1

[8]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[9]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[10]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[12]

Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135

[13]

Linlin Li, Bedreddine Ainseba. Large-time behavior of matured population in an age-structured model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2561-2580. doi: 10.3934/dcdsb.2020195

[14]

Reza Lotfi, Yahia Zare Mehrjerdi, Mir Saman Pishvaee, Ahmad Sadeghieh, Gerhard-Wilhelm Weber. A robust optimization model for sustainable and resilient closed-loop supply chain network design considering conditional value at risk. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 221-253. doi: 10.3934/naco.2020023

[15]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[16]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[17]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[18]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[19]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[Back to Top]