\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Time-delayed follow-the-leader model for pedestrians walking in line

Abstract / Introduction Related Papers Cited by
  • We use the results of a pedestrian tracking experiment to identify a follow-the-leader model for pedestrians walking-in-line. We demonstrate the existence of a time-delay between a subject's response and the predecessor's corresponding behavior. This time-delay induces an instability which can be damped out by a suitable relaxation. By comparisons with the experimental data, we show that the model reproduces well the emergence of large-scale structures such as congestions waves. The resulting model can be used either for modeling pedestrian queuing behavior or can be incorporated into bi-dimensional models of pedestrian traffic.
    Mathematics Subject Classification: Primary: 90B06, 90B20; Secondary: 91C99, 65L99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Appert-Rolland, P. Degond and S. Motsch, Two-way multi-lane traffic model for pedestrians in corridors, Netw. Heter. Media., 6 (2011), 351-381.doi: 10.3934/nhm.2011.6.351.

    [2]

    A. Aw, A. Klar, T. Materne and M. Rascle, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM J. Appl. Math., 63 (2002), 259-278.doi: 10.1137/S0036139900380955.

    [3]

    R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New-York, 1963.

    [4]

    N. Bellomo and C. Dogbé, On the modelling crowd dynamics from scaling to hyperbolic macroscopic models, Math. Models Methods Appl. Sci., 18 (2008), 1317-1345.doi: 10.1142/S0218202508003054.

    [5]

    N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models, speculations and perspectives, SIAM Review, 53 (2011), 409-463.doi: 10.1137/090746677.

    [6]

    S. Berres, R. Ruiz-Baier, H. Schwandt and E. M. Tory, An adaptive finite-volume method for a model of two-phase pedestrian flow, Netw. Heter. Media., 6 (2011), 401-423.doi: 10.3934/nhm.2011.6.401.

    [7]

    C. Burstedde, K. Klauck , A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton, Physica A, 295 (2001), 507-525.doi: 10.1016/S0378-4371(01)00141-8.

    [8]

    R. E. Chandler, R. Herman and E. W. Montroll, Traffic dynamics: Studies in car following, Operations Res., 6 (1958), 165-184.doi: 10.1287/opre.6.2.165.

    [9]

    M. Chraibi, A. Seyfried and A. Schadschneider, Generalized centrifugal-force model for pedestrian dynamics, Phys. Rev. E, 82 (2010), 046111.doi: 10.1103/PhysRevE.82.046111.

    [10]

    R. M. Colombo and M. D. Rosini, Pedestrian flows and nonclassical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567.doi: 10.1002/mma.624.

    [11]

    V. Coscia and C. Canavesio, First-order macroscopic modelling of human crowd dynamics, Math. Models Methods Appl. Sci., 18 (2008), 1217-1247.doi: 10.1142/S0218202508003017.

    [12]

    D. C. Gazis, R. Herman and R. Rothery, Nonlinear follow-the-leader models of traffic flow, Operations Res., 9 (1961), 545-567.doi: 10.1287/opre.9.4.545.

    [13]

    S. J. Guy, J. Chhugani, C. Kim, N. Satish, M. C. Lin, D. Manocha and P. Dubey, Clearpath: Highly parallel collision avoidance for multi-agent simulation, in ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 177-187.doi: 10.1145/1599470.1599494.

    [14]

    P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.doi: 10.1007/s10955-013-0805-x.

    [15]

    P. Degond, C. Appert-Rolland, J. Pettre and G. Theraulaz, Vision-based macroscopic pedestrian models, Kinet. Relat. Models, 6 (2013), 809-839.doi: 10.3934/krm.2013.6.809.

    [16]

    P. Degond and J. Hua, Self-Organized Hydrodynamics with congestion and path formation in crowds, J. Comput. Phys., 237 (2013), 299-319.doi: 10.1016/j.jcp.2012.11.033.

    [17]

    M. Di Francesco, P. A. Markowich, J.-F. Pietschmann and M.-T. Wolfram, On the Hughes' model for pedestrian flow: The one-dimensional case, J. Diff. Eq., 250 (2011), 1334-1362.doi: 10.1016/j.jde.2010.10.015.

    [18]

    D. Helbing, A mathematical model for the behavior of pedestrians, Behavioral Science, 36 (1991), 298-310.doi: 10.1002/bs.3830360405.

    [19]

    D. Helbing, A fluid dynamic model for the movement of pedestrians, Complex Systems, 6 (1992), 391-415.

    [20]

    D. Helbing and P. Molnàr, Social force model for pedestrian dynamics, Phys. Rev. E, 51 (1995), 4282-4286.doi: 10.1103/PhysRevE.51.4282.

    [21]

    D. Helbing and P. Molnàr, Self-organization phenomena in pedestrian crowds, in Self-Organization of Complex Structures: From Individual to Collective Dynamics (ed. F. Schweitzer), Gordon and Breach, London, 1997, 569-577.

    [22]

    L. F. Henderson, On the fluid mechanics of human crowd motion, Transp. Res., 8 (1974), 509-515.doi: 10.1016/0041-1647(74)90027-6.

    [23]

    S. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control and differential games, Optimal Control Appl. Methods, 24 (2003), 153-172.doi: 10.1002/oca.727.

    [24]

    W. H. Huang, B. R. Fajen, J. R. Fink and W. H. Warren, Visual navigation and obstacle avoidance using a steering potential function, Robotic and Autonomous Systems, 54 (2006), 288-299.doi: 10.1016/j.robot.2005.11.004.

    [25]

    L. Huang, S. C. Wong, M. Zhang, C.-W. Shu and W. H. K. Lam, Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm, Transp. Res. B, 43 (2009), 127-141.doi: 10.1016/j.trb.2008.06.003.

    [26]

    R. L. Hughes, A continuum theory for the flow of pedestrians, Transp. Res. B, 36 (2002), 507-535.doi: 10.1016/S0191-2615(01)00015-7.

    [27]

    R. L. Hughes, The flow of human crowds, Ann. Rev. Fluid Mech., 35 (2003), 169-182.doi: 10.1146/annurev.fluid.35.101101.161136.

    [28]

    A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line - Fundamental diagrams, Phys. Rev. E, 85 (2012), 036111.

    [29]

    A. Jelić, C. Appert-Rolland, S. Lemercier and J. Pettré, Properties of pedestrians walking in line. II. stepping behavior, Phys. Rev. E, 86 (2012), 046111.

    [30]

    D. Jezbera, D. Kordek, J. Kříž, Petr Šeba and P. Šroll, Walkers on the circle, J. Stat. Mech. Theory Exp., 2010 (2010), L01001.doi: 10.1088/1742-5468/2010/01/L01001.

    [31]

    Y.-q. Jiang, P. Zhang, S. C. Wong and R.-x. Liu, A higher-order macroscopic model for pedestrian flows, Physica A, 389 (2010), 4623-4635.doi: 10.1016/j.physa.2010.05.003.

    [32]

    A. Johansson, Constant-net-time headway as a key mechanism behind pedestrian flow dynamics, Phys. Rev. E, 80 (2009), 026120.doi: 10.1103/PhysRevE.80.026120.

    [33]

    S. Lemercier, A. Jelić, R. Kulpa, J. Hua, J. Fehrenbach, P. Degond, C. Appert-Rolland, S. Donikian and J. Pettré, Realistic following behaviors for crowd simulation, Computer Graphics Forum, 31 (2012), 489-498.doi: 10.1111/j.1467-8659.2012.03028.x.

    [34]

    S. Lemercier, M. Moreau, M. Moussaïd, G. Theraulaz, S. Donikian and J. Pettré, Reconstructing motion capture data for human crowd study, in Motion in Games, Lecture Notes in Computer Science, 7060, Springer, Berlin-Heidelberg, 2011, 365-376.doi: 10.1007/978-3-642-25090-3_31.

    [35]

    B. Maury, A. Roudneff-Chupin, F. Santambrogio and J. Venel, Handling congestion in crowd motion models, Netw. Heterog. Media, 6 (2011), 485-519.doi: 10.3934/nhm.2011.6.485.

    [36]

    M. Moussaïd, E. G. Guillot, M. Moreau, J. Fehrenbach, O. Chabiron, S. Lemercier, J. Pettré, C. Appert-Rolland, P. Degond and G. Theraulaz, Traffic Instabilities in Self-organized Pedestrian Crowds, PLoS Comput. Biol., 8 (2012), e1002442.

    [37]

    M. Moussaïd, D. Helbing and G. Theraulaz, How simple rules determine pedestrian behavior and crowd disasters, Proc. Nat. Acad. Sci., 108 (2011), 6884-6888.

    [38]

    K. Nishinari, A. Kirchner, A. Namazi and A. Schadschneider, Extended floor field CA model for evacuation dynamics, IEICE Transp. Inf. & Syst., E87-D (2004), 726-732.

    [39]

    J. Ondrej, J. Pettré, A. H. Olivier and S. Donikian, A Synthetic-vision based steering approach for crowd simulation, in SIGGRAPH'10, 29 (2010), p123.doi: 10.1145/1833349.1778860.

    [40]

    S. Paris, J. Pettré and S. Donikian, Pedestrian reactive navigation for crowd simulation: A predictive approach, Eurographics, 26 (2007), 665-674.doi: 10.1111/j.1467-8659.2007.01090.x.

    [41]

    J. Pettré, J. Ondřej, A.-H. Olivier, A. Cretual and S. Donikian, Experiment-based modeling, simulation and validation of interactions between virtual walkers, in SCA '09: Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2009, 189-198.

    [42]

    B. Piccoli and A. Tosin, Pedestrian flows in bounded domains with obstacles, Contin. Mech. Thermodyn., 21 (2009), 85-107.doi: 10.1007/s00161-009-0100-x.

    [43]

    L. Pontrjagin, On the zeros of some elementary transcendental functions, Amer. Math. Soc. Transl. Ser. 2, 1 (1955), 95-110.

    [44]

    C. W. Reynolds, Steering behaviors for autonomous characters, in Proceedings of Game Developers Conference, San Jose, California, 1999, 763-782.

    [45]

    A. Seyfried, B. Steffen, W. Klingsch and M. Boltes, The fundamental diagram of pedestrian movement revisited, J. Stat. Mech. Theory Exp., 2005 (2005), P10002.doi: 10.1088/1742-5468/2005/10/P10002.

    [46]

    A. Seyfried, B. Steffen and T. Lippert, Basics of modelling the pedestrian flow, Phys. A, 368 (2006), 232-238.doi: 10.1016/j.physa.2005.11.052.

    [47]

    J. van den Berg and H. Overmars, Planning time-minimal safe paths amidst unpredictably moving obstacles, Int. Journal on Robotics Research, 27 (2008), 1274-1294.

    [48]

    J. Zhang, W. Klingsch, A. Schadschneider and A. Seyfried, Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram, J. Stat. Mech. Theory Exp., 2012 (2012), P02002.doi: 10.1088/1742-5468/2012/02/P02002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(160) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return