September  2015, 10(3): 647-697. doi: 10.3934/nhm.2015.10.647

Sparse control of alignment models in high dimension

1. 

Technische Universität München, Fakultät Mathematik, Boltzmannstraße 3, D-85748 Garching

2. 

Technische Universität München, Fakultät Mathematik, Boltzmannstrasse 3, D-85748 Garching, Germany, Germany

Received  August 2014 Revised  December 2014 Published  July 2015

For high dimensional particle systems, governed by smooth nonlinearities depending on mutual distances between particles, one can construct low-dimensional representations of the dynamical system, which allow the learning of nearly optimal control strategies in high dimension with overwhelming confidence. In this paper we present an instance of this general statement tailored to the sparse control of models of consensus emergence in high dimension, projected to lower dimensions by means of random linear maps. We show that one can steer, nearly optimally and with high probability, a high-dimensional alignment model to consensus by acting at each switching time on one agent of the system only, with a control rule chosen essentially exclusively according to information gathered from a randomly drawn low-dimensional representation of the control system.
Citation: Mattia Bongini, Massimo Fornasier, Oliver Junge, Benjamin Scharf. Sparse control of alignment models in high dimension. Networks & Heterogeneous Media, 2015, 10 (3) : 647-697. doi: 10.3934/nhm.2015.10.647
References:
[1]

S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility,, Math. Models Methods Appl. Sci., 23 (2013), 1603. doi: 10.1142/S0218202513500176. Google Scholar

[2]

R. G. Baraniuk and M. B. Wakin, Random projections of smooth manifolds,, Found. Comput. Math., 9 (2009), 51. doi: 10.1007/s10208-007-9011-z. Google Scholar

[3]

M. Bongini and M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces,, Netw. Heterog. Media, 9 (2014), 1. doi: 10.3934/nhm.2014.9.1. Google Scholar

[4]

M. Bongini, D. Kalise and M. Fornasier, (Un)conditional consensus emergence under perturbed and decentralized feedback controls,, Discrete Contin. Dynam. Systems, 35 (2015), 4071. doi: 10.3934/dcds.2015.35.4071. Google Scholar

[5]

J. Bouvrie and M. Maggioni, Geometric multiscale reduction for autonomous and controlled nonlinear systems,, in 51st IEEE Conference on Decision and Control (CDC), (2012), 4320. doi: 10.1109/CDC.2012.6425873. Google Scholar

[6]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of the Cucker-Smale model,, Math. Control Relat. Fields, 3 (2013), 447. doi: 10.3934/mcrf.2013.3.447. Google Scholar

[7]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of alignment models,, Math. Models Methods Appl. Sci., 25 (2015), 521. doi: 10.1142/S0218202515400059. Google Scholar

[8]

F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization,, IEEE Trans. Automat. Control, 42 (1997), 1394. doi: 10.1109/9.633828. Google Scholar

[9]

R. R. Coifman and M. J. Hirn, Diffusion maps for changing data,, Appl. Comput. Harmon. Anal., 36 (2014), 79. doi: 10.1016/j.acha.2013.03.001. Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842. Google Scholar

[11]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197. doi: 10.1007/s11537-007-0647-x. Google Scholar

[12]

S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss,, Random Structures Algorithms, 22 (2003), 60. doi: 10.1002/rsa.10073. Google Scholar

[13]

S. Dirksen, Dimensionality reduction with subgaussian matrices: A unified theory,, , (2014). Google Scholar

[14]

M. Fornasier, J. Haškovec and J. Vybíral, Particle systems and kinetic equations modeling interacting agents in high dimension,, Multiscale Model. Simul., 9 (2011), 1727. doi: 10.1137/110830617. Google Scholar

[15]

M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014). doi: 10.1098/rsta.2013.0400. Google Scholar

[16]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM Control Optim. Calc. Var., 20 (2014), 1123. doi: 10.1051/cocv/2014009. Google Scholar

[17]

S.-Y. Ha, T. H. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679. doi: 10.1109/TAC.2010.2046113. Google Scholar

[18]

W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,, in Conference in modern analysis and probability, (1982), 189. doi: 10.1090/conm/026/737400. Google Scholar

show all references

References:
[1]

S. Ahn, H.-O. Bae, S.-Y. Ha, Y. Kim and H. Lim, Application of flocking mechanism to the modeling of stochastic volatility,, Math. Models Methods Appl. Sci., 23 (2013), 1603. doi: 10.1142/S0218202513500176. Google Scholar

[2]

R. G. Baraniuk and M. B. Wakin, Random projections of smooth manifolds,, Found. Comput. Math., 9 (2009), 51. doi: 10.1007/s10208-007-9011-z. Google Scholar

[3]

M. Bongini and M. Fornasier, Sparse stabilization of dynamical systems driven by attraction and avoidance forces,, Netw. Heterog. Media, 9 (2014), 1. doi: 10.3934/nhm.2014.9.1. Google Scholar

[4]

M. Bongini, D. Kalise and M. Fornasier, (Un)conditional consensus emergence under perturbed and decentralized feedback controls,, Discrete Contin. Dynam. Systems, 35 (2015), 4071. doi: 10.3934/dcds.2015.35.4071. Google Scholar

[5]

J. Bouvrie and M. Maggioni, Geometric multiscale reduction for autonomous and controlled nonlinear systems,, in 51st IEEE Conference on Decision and Control (CDC), (2012), 4320. doi: 10.1109/CDC.2012.6425873. Google Scholar

[6]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of the Cucker-Smale model,, Math. Control Relat. Fields, 3 (2013), 447. doi: 10.3934/mcrf.2013.3.447. Google Scholar

[7]

M. Caponigro, M. Fornasier, B. Piccoli and E. Trelat, Sparse stabilization and control of alignment models,, Math. Models Methods Appl. Sci., 25 (2015), 521. doi: 10.1142/S0218202515400059. Google Scholar

[8]

F. H. Clarke, Y. S. Ledyaev, E. D. Sontag and A. I. Subbotin, Asymptotic controllability implies feedback stabilization,, IEEE Trans. Automat. Control, 42 (1997), 1394. doi: 10.1109/9.633828. Google Scholar

[9]

R. R. Coifman and M. J. Hirn, Diffusion maps for changing data,, Appl. Comput. Harmon. Anal., 36 (2014), 79. doi: 10.1016/j.acha.2013.03.001. Google Scholar

[10]

F. Cucker and S. Smale, Emergent behavior in flocks,, IEEE Trans. Automat. Control, 52 (2007), 852. doi: 10.1109/TAC.2007.895842. Google Scholar

[11]

F. Cucker and S. Smale, On the mathematics of emergence,, Jpn. J. Math., 2 (2007), 197. doi: 10.1007/s11537-007-0647-x. Google Scholar

[12]

S. Dasgupta and A. Gupta, An elementary proof of a theorem of Johnson and Lindenstrauss,, Random Structures Algorithms, 22 (2003), 60. doi: 10.1002/rsa.10073. Google Scholar

[13]

S. Dirksen, Dimensionality reduction with subgaussian matrices: A unified theory,, , (2014). Google Scholar

[14]

M. Fornasier, J. Haškovec and J. Vybíral, Particle systems and kinetic equations modeling interacting agents in high dimension,, Multiscale Model. Simul., 9 (2011), 1727. doi: 10.1137/110830617. Google Scholar

[15]

M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control,, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014). doi: 10.1098/rsta.2013.0400. Google Scholar

[16]

M. Fornasier and F. Solombrino, Mean-field optimal control,, ESAIM Control Optim. Calc. Var., 20 (2014), 1123. doi: 10.1051/cocv/2014009. Google Scholar

[17]

S.-Y. Ha, T. H. Ha and J.-H. Kim, Emergent behavior of a Cucker-Smale type particle model with nonlinear velocity couplings,, IEEE Trans. Automat. Control, 55 (2010), 1679. doi: 10.1109/TAC.2010.2046113. Google Scholar

[18]

W. B. Johnson and J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space,, in Conference in modern analysis and probability, (1982), 189. doi: 10.1090/conm/026/737400. Google Scholar

[1]

V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901

[2]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[3]

Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315

[4]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[5]

V. Afraimovich, Jean-René Chazottes, Benoît Saussol. Pointwise dimensions for Poincaré recurrences associated with maps and special flows. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 263-280. doi: 10.3934/dcds.2003.9.263

[6]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[7]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[8]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[9]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[10]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[11]

Valentin Afraimovich, Jean-Rene Chazottes and Benoit Saussol. Local dimensions for Poincare recurrences. Electronic Research Announcements, 2000, 6: 64-74.

[12]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[13]

Jean-Pierre Francoise, Claude Piquet. Global recurrences of multi-time scaled systems. Conference Publications, 2011, 2011 (Special) : 430-436. doi: 10.3934/proc.2011.2011.430

[14]

Jerrold E. Marsden, Alexey Tret'yakov. Factor analysis of nonlinear mappings: p-regularity theory. Communications on Pure & Applied Analysis, 2003, 2 (4) : 425-445. doi: 10.3934/cpaa.2003.2.425

[15]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[16]

Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129

[17]

Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

[18]

Jiahang Che, Li Chen, Simone GÖttlich, Anamika Pandey, Jing Wang. Boundary layer analysis from the Keller-Segel system to the aggregation system in one space dimension. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1013-1036. doi: 10.3934/cpaa.2017049

[19]

João Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 641-656. doi: 10.3934/dcds.2006.15.641

[20]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

[Back to Top]