Citation: |
[1] |
G. Albi, Kinetic Approximation, Stability and Control of Collective Behavior in Self-Organized Systems, Ph.D. thesis, Università degli Studi di Ferrara, 2013. |
[2] |
G. Albi, M. Herty and L. Pareschi, Kinetic description of optimal control problems and applications to opinion consensus, Comm. Math. Sciences, to appear, (2015). |
[3] |
G. Albi and L. Pareschi, Binary interaction algorithms for the simulation of flocking and swarming dynamics, Multiscale Model. Simul., 11 (2013), 1-29.doi: 10.1137/120868748. |
[4] |
________, Modeling of self-organized systems interacting with a few individuals: From microscopic to macroscopic dynamics, Appl. Math. Lett., 26 (2013), 397-401. |
[5] |
G. Albi, L. Pareschi and M. Zanella, Boltzmann-type control of opinion consensus through leaders, Phil. Trans. R. Soc. A, 372 (2014), 20140138, 18pp.doi: 10.1098/rsta.2014.0138. |
[6] |
D. Armbruster and C. Ringhofer, Thermalized kinetic and fluid models for re-entrant supply chains, SIAM J. Multiscale Modeling and Simulation, 3 (2005), 782-800.doi: 10.1137/030601636. |
[7] |
N. Bellomo, G. Ajmone Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation, Springer Briefs in Mathematics, Springer, New York, 2013.doi: 10.1007/978-1-4614-7242-1. |
[8] |
N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), 1140006, 29pp.doi: 10.1142/S0218202511400069. |
[9] |
A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, Springer Briefs in Mathematics, Springer, New York, 2013.doi: 10.1007/978-1-4614-8508-7. |
[10] |
A. Borzí and S. Wongkaew, Modeling and control through leadership of a refined flocking system, Math. Models Methods Appl. Sci., 25 (2015), 255-282.doi: 10.1142/S0218202515500098. |
[11] |
L. Boudin and F. Salvarani, A kinetic approach to the study of opinion formation, ESAIM: Math. Mod. Num. Anal., 43 (2009), 507-522.doi: 10.1051/m2an/2009004. |
[12] |
R. M. Colombo and N. Pogodaev, Confinement strategies in a model for the interaction between individuals and a continuum, SIAM J. Appl. Dyn. Syst., 11 (2012), 741-770.doi: 10.1137/110854321. |
[13] |
_______, On the control of moving sets: Positive and negative confinement results, SIAM J. Control Optim., 51 (2013), 380-401. |
[14] |
S. Cordier, L. Pareschi and G. Toscani, On a kinetic model for a simple market economy, J. Stat. Phys., 120 (2005), 253-277.doi: 10.1007/s10955-005-5456-0. |
[15] |
I. Couzin, J. Krause, N. Franks and S. Levin, Effective leadership and decision-making in animal groups on the move, Nature, 433 (2005), 513-516.doi: 10.1038/nature03236. |
[16] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.doi: 10.1109/TAC.2007.895842. |
[17] |
P. Degond, M. Herty and J.-G. Liu, Flow on sweeping networks, Multiscale Modeling & Simulation, 12 (2014), 538-565.doi: 10.1137/130927061. |
[18] |
P. Degond, J. Liu and C. Ringhofer, Evolution of the distribution of wealth in economic neighborhood by local nash equilibrium closure, preprint, 2013. |
[19] |
P. Degond, J.-G. Liu, S. Motsch and V. Panferov, Hydrodynamic models of self-organized dynamics: Derivation and existence theory, Methods and Applications of Analysis, 20 (2013), 89-114.doi: 10.4310/MAA.2013.v20.n2.a1. |
[20] |
P. Degond, J.-G. Liu and C. Ringhofer, Large-scale dynamics of mean-field games driven by local nash equilibria, Journal of Nonlinear Science, 24 (2014), 93-115.doi: 10.1007/s00332-013-9185-2. |
[21] |
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.doi: 10.1142/S0218202508003005. |
[22] |
B. Düring, P. Markowich, J.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. A, 465 (2009), 3687-3708.doi: 10.1098/rspa.2009.0239. |
[23] |
A. Fleig, L. Grüne and R. Guglielmi, Some results on model predictive control for the Fokker-Planck equation, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS 2014), 2014, 1203-1206. |
[24] |
M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via Povzner-Boltzmann equation, Physica D, 240 (2011), 21-31.doi: 10.1016/j.physd.2010.08.003. |
[25] |
M. Fornasier, B. Piccoli and F. Rossi, Mean-field sparse optimal control, Phil. Trans. R. Soc. A, 372 (2014), 20130400, 21pp.doi: 10.1098/rsta.2013.0400. |
[26] |
M. Fornasier and F. Solombrino, Mean-field optimal control, ESAIM Control Optim. Calc. Var., 20 (2014), 1123-1152.doi: 10.1051/cocv/2014009. |
[27] |
S. Galam, Y. Gefen and Y. Shapir, Sociophysics: A new approach of sociological collective behavior, J. Math. Sociology, 9 (1982), 1-13. |
[28] |
J. Gómez-Serrano, C. Graham and J.-Y. Le Boudec, The bounded confidence model of opinion dynamics, Math. Models Methods Appl. Sci., 22 (2012), 1150007, 46pp.doi: 10.1142/S0218202511500072. |
[29] |
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.doi: 10.3934/krm.2008.1.415. |
[30] |
R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence, models, analysis and simulation, Journal of Artificial Societies and Social Simulation, 5 (2002), p2. |
[31] |
M. Herty and L. Pareschi, Fokker-planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179.doi: 10.3934/krm.2010.3.165. |
[32] |
M. Herty and C. Ringhofer, Averaged kinetic models for flows on unstructured networks, Kinet. Relat. Models, 4 (2011), 1081-1096.doi: 10.3934/krm.2011.4.1081. |
[33] |
_______, Feedback controls for continuous priority models in supply chain management, Comput. Methods Appl. Math., 11 (2011), 206-213. |
[34] |
J.-M. Lasry and P.-L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.doi: 10.1007/s11537-007-0657-8. |
[35] |
D. Maldarella and L. Pareschi, Kinetic models for socio-economic dynamics of speculative markets, Physica A, 391 (2012), 715-730.doi: 10.1016/j.physa.2011.08.013. |
[36] |
P. Markowich, M. Burger and L. Caffarelli, eds., Partial differential equation models in the socio-economic sciences, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130406, 8pp.doi: 10.1098/rsta.2013.0406. |
[37] |
D. Q. Mayne and H. Michalska, Receding horizon control of nonlinear systems, IEEE Trans. Automat. Control, 35 (1990), 814-824.doi: 10.1109/9.57020. |
[38] |
S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.doi: 10.1137/120901866. |
[39] |
G. Naldi, L. Pareschi and G. Toscani, eds., Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston, 2010.doi: 10.1007/978-0-8176-4946-3. |
[40] |
L. Pareschi and G. Toscani, Interacting Multi-Agent Systems. Kinetic Equations & Monte Carlo Methods, Oxford University Press, 2013. |
[41] |
E. D. Sontag, Mathematical Control Theory, Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998.doi: 10.1007/978-1-4612-0577-7. |
[42] |
G. Toscani, Kinetic models of opinion formation, Commun. Math. Sci., 4 (2006), 481-496.doi: 10.4310/CMS.2006.v4.n3.a1. |
[43] |
T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, 517 (2012), 71-140.doi: 10.1016/j.physrep.2012.03.004. |