\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics

Abstract / Introduction Related Papers Cited by
  • We study the practical synchronization of the Kuramoto dynamics of units distributed over networks. The unit dynamics on the nodes of the network are governed by the interplay between their own intrinsic dynamics and Kuramoto coupling dynamics. We present two sufficient conditions for practical synchronization under homogeneous and heterogeneous forcing. For practical synchronization estimates, we employ the configuration diameter as a Lyapunov functional, and derive a Gronwall-type differential inequality for this value.
    Mathematics Subject Classification: Primary: 70F99; Secondary: 92B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.doi: 10.1103/RevModPhys.77.137.

    [2]

    T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp.doi: 10.1063/1.2952447.

    [3]

    R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0653-8.

    [4]

    S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68.doi: 10.1007/s11071-008-9379-6.

    [5]

    J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.doi: 10.1038/211562a0.

    [6]

    L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos, 18 (2008), 043128, 9pp.doi: 10.1063/1.3049136.

    [7]

    Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.doi: 10.1016/j.physd.2011.11.011.

    [8]

    Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44.doi: 10.1016/j.physd.2010.08.004.

    [9]

    N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357.doi: 10.1109/TAC.2008.2007884.

    [10]

    X. Dong, J. Xi, Z. Shi and Y. Zhong, Consensus for High-Order Time-Delayed Swarm Systems With Uncertainties and External Disturbances, in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011.

    [11]

    F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.doi: 10.1137/10081530X.

    [12]

    R. Femat and G. Solis-Perales, On the chaos synchronization phenomena, Physics Letters A, 262 (1999), 50-60.doi: 10.1016/S0375-9601(99)00667-2.

    [13]

    S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700.doi: 10.1016/j.physd.2010.05.003.

    [14]

    S.-Y. Ha, E. Jeong and M.-J. Kang, Emergent behavior of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156.doi: 10.1088/0951-7715/23/12/008.

    [15]

    S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Communications in Mathematical Sciences, 12 (2014), 485-508.doi: 10.4310/CMS.2014.v12.n3.a5.

    [16]

    A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in Proceedings of the American Control Conference. Boston Massachusetts 2004.

    [17]

    J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Time-Varying Multi-Agent Systems, in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012.

    [18]

    Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag Berlin 1984.doi: 10.1007/978-3-642-69689-3.

    [19]

    Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 39 (1975), 420-422.

    [20]

    P. Louodop, H. Fotsin, E. Megam Ngouonkadi, S. Bowong and H. Cerdeira, Effective Synchronization of a Class of Chua's Chaotic Systems Using an Exponential Feedback Coupling, Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp.

    [21]

    M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292.doi: 10.1007/s11071-012-0346-x.

    [22]

    M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073 14pp.

    [23]

    R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347.doi: 10.1007/s00332-006-0806-x.

    [24]

    R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266.doi: 10.1016/j.physd.2005.01.017.

    [25]

    R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635.doi: 10.1007/BF01029202.

    [26]

    E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp.doi: 10.1063/1.2930766.

    [27]

    A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001.doi: 10.1017/CBO9780511755743.

    [28]

    H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46.doi: 10.1143/PTP.79.39.

    [29]

    E. Steur, L. Kodde and H. Nijmeijer, Synchronization of Diffusively Coupled Electronic Hindmarsh-Rose Oscillators, in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210.doi: 10.1142/9789814282321_0013.

    [30]

    S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347.doi: 10.1007/BF00276440.

    [31]

    A. T. Winfree, The Geometry of Biological Time, Springer New York 1980.

    [32]

    A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1987), 15-42.doi: 10.1016/0022-5193(67)90051-3.

    [33]

    H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (1912), 441-479.doi: 10.1007/BF01456804.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(353) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return