Citation: |
[1] |
J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.doi: 10.1103/RevModPhys.77.137. |
[2] |
T. M. Antonsen, R. T. Faghih, M. Girvan, E. Ott and J. Platig, External periodic driving of large systems of globally coupled phase oscillators, Chaos, 18 (2008), 037112, 10pp.doi: 10.1063/1.2952447. |
[3] |
R. Bhatia, Matrix Analysis, Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0653-8. |
[4] |
S. Bowong and J. Tewa, Practical adaptive synchronization of a class of uncertain chaotic systems, Nonlinear Dynam., 56 (2009), 57-68.doi: 10.1007/s11071-008-9379-6. |
[5] |
J. Buck and E. Buck, Biology of synchronous flashing of fireflies, Nature, 211 (1966), 562-564.doi: 10.1038/211562a0. |
[6] |
L. M. Childs and S. H. Strogatz, Stability diagram for the forced Kuramoto model, Chaos, 18 (2008), 043128, 9pp.doi: 10.1063/1.3049136. |
[7] |
Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.doi: 10.1016/j.physd.2011.11.011. |
[8] |
Y.-P. Choi, S.-Y. Ha and S.-B. Yun, Complete synchronization of Kuramoto oscillators with finite inertia, Physica D, 240 (2011), 32-44.doi: 10.1016/j.physd.2010.08.004. |
[9] |
N. Chopra and M. W. Spong, On exponential synchronization of Kuramoto oscillators, IEEE Trans. Automatic Control, 54 (2009), 353-357.doi: 10.1109/TAC.2008.2007884. |
[10] |
X. Dong, J. Xi, Z. Shi and Y. Zhong, Consensus for High-Order Time-Delayed Swarm Systems With Uncertainties and External Disturbances, in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011. |
[11] |
F. Dorfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.doi: 10.1137/10081530X. |
[12] |
R. Femat and G. Solis-Perales, On the chaos synchronization phenomena, Physics Letters A, 262 (1999), 50-60.doi: 10.1016/S0375-9601(99)00667-2. |
[13] |
S.-Y. Ha, T. Ha and J.-H. Kim, On the complete synchronization of the Kuramoto phase model, Physica D, 239 (2010), 1692-1700.doi: 10.1016/j.physd.2010.05.003. |
[14] |
S.-Y. Ha, E. Jeong and M.-J. Kang, Emergent behavior of a generalized Viscek-type flocking model, Nonlinearity, 23 (2010), 3139-3156.doi: 10.1088/0951-7715/23/12/008. |
[15] |
S.-Y. Ha and Z. Li, Complete synchronization of Kuramoto oscillators with hierarchical leadership, Communications in Mathematical Sciences, 12 (2014), 485-508.doi: 10.4310/CMS.2014.v12.n3.a5. |
[16] |
A. Jadbabaie, N. Motee and M. Barahona, On the stability of the Kuramoto model of coupled nonlinear oscillators, in Proceedings of the American Control Conference. Boston Massachusetts 2004. |
[17] |
J. Kim, J. Yang, J. Kim and H. Shim, Practical Consensus for Heterogeneous Linear Time-Varying Multi-Agent Systems, in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012. |
[18] |
Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag Berlin 1984.doi: 10.1007/978-3-642-69689-3. |
[19] |
Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, International symposium on mathematical problems in mathematical physics, Lecture notes in theoretical physics, 39 (1975), 420-422. |
[20] |
P. Louodop, H. Fotsin, E. Megam Ngouonkadi, S. Bowong and H. Cerdeira, Effective Synchronization of a Class of Chua's Chaotic Systems Using an Exponential Feedback Coupling, Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp. |
[21] |
M. Ma, J. Zhou and J. Cai, Practical synchronization of second-order nonautonomous systems with parameter mismatch and its applications, Nonlinear Dynam., 69 (2012), 1285-1292.doi: 10.1007/s11071-012-0346-x. |
[22] |
M. Ma, J. Zhou and J. Cai, Practical synchronization of non autonomous systems with uncertain parameter mismatch via a single feedback control, Int. J. Mod Phys C, 23 (2012), 1250073 14pp. |
[23] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the partially locked state for the Kuramoto model of coupled oscillator, J. Nonlinear Sci., 17 (2007), 309-347.doi: 10.1007/s00332-006-0806-x. |
[24] |
R. E. Mirollo and S. H. Strogatz, The spectrum of the locked state for the Kuramoto model of coupled oscillator, Physica D, 205 (2005), 249-266.doi: 10.1016/j.physd.2005.01.017. |
[25] |
R. E. Mirollo and S. H. Strogatz, Stability of incoherence in a populations of coupled oscillators, J. Stat. Phy., 63 (1991), 613-635.doi: 10.1007/BF01029202. |
[26] |
E. Ott and T. M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008), 037113, 6pp.doi: 10.1063/1.2930766. |
[27] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, 2001.doi: 10.1017/CBO9780511755743. |
[28] |
H. Sakaguchi, Cooperative phenomena in coupled oscillator systems under external fields, Prog. Theor. Phys., 79 (1988), 39-46.doi: 10.1143/PTP.79.39. |
[29] |
E. Steur, L. Kodde and H. Nijmeijer, Synchronization of Diffusively Coupled Electronic Hindmarsh-Rose Oscillators, in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210.doi: 10.1142/9789814282321_0013. |
[30] |
S. H. Strogatz, Human sleep and circadian rhythms: A simple model based on two coupled oscillators, J. Math. Biol., 25 (1987), 327-347.doi: 10.1007/BF00276440. |
[31] |
A. T. Winfree, The Geometry of Biological Time, Springer New York 1980. |
[32] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1987), 15-42.doi: 10.1016/0022-5193(67)90051-3. |
[33] |
H. Weyl, Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen, Math. Ann., 71 (1912), 441-479.doi: 10.1007/BF01456804. |