-
Previous Article
(Almost) Everything you always wanted to know about deterministic control problems in stratified domains
- NHM Home
- This Issue
-
Next Article
Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks
Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics
1. | Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University, Seoul 151-747 |
2. | Department of Mathematics, Myongji University, Yong-In, 449-728, South Korea |
3. | Department of Mathematical Sciences, Seoul National University, Seoul, 151-747 |
References:
[1] |
Rev. Mod. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137. |
[2] |
Chaos, 18 (2008), 037112, 10pp.
doi: 10.1063/1.2952447. |
[3] |
Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0653-8. |
[4] |
Nonlinear Dynam., 56 (2009), 57-68.
doi: 10.1007/s11071-008-9379-6. |
[5] |
Nature, 211 (1966), 562-564.
doi: 10.1038/211562a0. |
[6] |
Chaos, 18 (2008), 043128, 9pp.
doi: 10.1063/1.3049136. |
[7] |
Physica D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011. |
[8] |
Physica D, 240 (2011), 32-44.
doi: 10.1016/j.physd.2010.08.004. |
[9] |
IEEE Trans. Automatic Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884. |
[10] |
in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011. Google Scholar |
[11] |
SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.
doi: 10.1137/10081530X. |
[12] |
Physics Letters A, 262 (1999), 50-60.
doi: 10.1016/S0375-9601(99)00667-2. |
[13] |
Physica D, 239 (2010), 1692-1700.
doi: 10.1016/j.physd.2010.05.003. |
[14] |
Nonlinearity, 23 (2010), 3139-3156.
doi: 10.1088/0951-7715/23/12/008. |
[15] |
Communications in Mathematical Sciences, 12 (2014), 485-508.
doi: 10.4310/CMS.2014.v12.n3.a5. |
[16] |
in Proceedings of the American Control Conference. Boston Massachusetts 2004. Google Scholar |
[17] |
in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012. Google Scholar |
[18] |
Springer-Verlag Berlin 1984.
doi: 10.1007/978-3-642-69689-3. |
[19] |
Lecture notes in theoretical physics, 39 (1975), 420-422. |
[20] |
Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp. |
[21] |
Nonlinear Dynam., 69 (2012), 1285-1292.
doi: 10.1007/s11071-012-0346-x. |
[22] |
Int. J. Mod Phys C, 23 (2012), 1250073 14pp. Google Scholar |
[23] |
J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x. |
[24] |
Physica D, 205 (2005), 249-266.
doi: 10.1016/j.physd.2005.01.017. |
[25] |
J. Stat. Phy., 63 (1991), 613-635.
doi: 10.1007/BF01029202. |
[26] |
Chaos, 18 (2008), 037113, 6pp.
doi: 10.1063/1.2930766. |
[27] |
Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743. |
[28] |
Prog. Theor. Phys., 79 (1988), 39-46.
doi: 10.1143/PTP.79.39. |
[29] |
in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210.
doi: 10.1142/9789814282321_0013. |
[30] |
J. Math. Biol., 25 (1987), 327-347.
doi: 10.1007/BF00276440. |
[31] |
Springer New York 1980. |
[32] |
J. Theor. Biol., 16 (1987), 15-42.
doi: 10.1016/0022-5193(67)90051-3. |
[33] |
Math. Ann., 71 (1912), 441-479.
doi: 10.1007/BF01456804. |
show all references
References:
[1] |
Rev. Mod. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137. |
[2] |
Chaos, 18 (2008), 037112, 10pp.
doi: 10.1063/1.2952447. |
[3] |
Graduate Text in Mathematics, 169. Springer-Verlag, New York, 1997.
doi: 10.1007/978-1-4612-0653-8. |
[4] |
Nonlinear Dynam., 56 (2009), 57-68.
doi: 10.1007/s11071-008-9379-6. |
[5] |
Nature, 211 (1966), 562-564.
doi: 10.1038/211562a0. |
[6] |
Chaos, 18 (2008), 043128, 9pp.
doi: 10.1063/1.3049136. |
[7] |
Physica D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011. |
[8] |
Physica D, 240 (2011), 32-44.
doi: 10.1016/j.physd.2010.08.004. |
[9] |
IEEE Trans. Automatic Control, 54 (2009), 353-357.
doi: 10.1109/TAC.2008.2007884. |
[10] |
in Proceedings of the 30th Chinese Control Conference, Yantai, China 2011. Google Scholar |
[11] |
SIAM J. Appl. Dyn. Syst., 10 (2011), 1070-1099.
doi: 10.1137/10081530X. |
[12] |
Physics Letters A, 262 (1999), 50-60.
doi: 10.1016/S0375-9601(99)00667-2. |
[13] |
Physica D, 239 (2010), 1692-1700.
doi: 10.1016/j.physd.2010.05.003. |
[14] |
Nonlinearity, 23 (2010), 3139-3156.
doi: 10.1088/0951-7715/23/12/008. |
[15] |
Communications in Mathematical Sciences, 12 (2014), 485-508.
doi: 10.4310/CMS.2014.v12.n3.a5. |
[16] |
in Proceedings of the American Control Conference. Boston Massachusetts 2004. Google Scholar |
[17] |
in Proceedings of 12th International Conference on Control, Automation and Systems, Jeju Island, Korea 2012. Google Scholar |
[18] |
Springer-Verlag Berlin 1984.
doi: 10.1007/978-3-642-69689-3. |
[19] |
Lecture notes in theoretical physics, 39 (1975), 420-422. |
[20] |
Abstr. Appl. Anal., 2013 (2013), Art. ID 483269, 7 pp. |
[21] |
Nonlinear Dynam., 69 (2012), 1285-1292.
doi: 10.1007/s11071-012-0346-x. |
[22] |
Int. J. Mod Phys C, 23 (2012), 1250073 14pp. Google Scholar |
[23] |
J. Nonlinear Sci., 17 (2007), 309-347.
doi: 10.1007/s00332-006-0806-x. |
[24] |
Physica D, 205 (2005), 249-266.
doi: 10.1016/j.physd.2005.01.017. |
[25] |
J. Stat. Phy., 63 (1991), 613-635.
doi: 10.1007/BF01029202. |
[26] |
Chaos, 18 (2008), 037113, 6pp.
doi: 10.1063/1.2930766. |
[27] |
Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743. |
[28] |
Prog. Theor. Phys., 79 (1988), 39-46.
doi: 10.1143/PTP.79.39. |
[29] |
in Dynamics and control of hybrid mechanical systems (eds. G. Leonov, H. Nijmeijer, A. Pogromsky and A. Fradkov), Singapore, World Scientific, (2010), 195-210.
doi: 10.1142/9789814282321_0013. |
[30] |
J. Math. Biol., 25 (1987), 327-347.
doi: 10.1007/BF00276440. |
[31] |
Springer New York 1980. |
[32] |
J. Theor. Biol., 16 (1987), 15-42.
doi: 10.1016/0022-5193(67)90051-3. |
[33] |
Math. Ann., 71 (1912), 441-479.
doi: 10.1007/BF01456804. |
[1] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[2] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[3] |
Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53 |
[4] |
Yu Jin, Xiao-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1991-2010. doi: 10.3934/dcdsb.2020362 |
[5] |
Daniel Amin, Mikael Vejdemo-Johansson. Intrinsic disease maps using persistent cohomology. Foundations of Data Science, 2021 doi: 10.3934/fods.2021008 |
[6] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[7] |
Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301 |
[8] |
Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109 |
[9] |
Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271 |
[10] |
Weiyi Zhang, Zuhan Liu, Ling Zhou. Dynamics of a nonlocal diffusive logistic model with free boundaries in time periodic environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3767-3784. doi: 10.3934/dcdsb.2020256 |
[11] |
Seung-Yeal Ha, Dongnam Ko, Chanho Min, Xiongtao Zhang. Emergent collective behaviors of stochastic kuramoto oscillators. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1059-1081. doi: 10.3934/dcdsb.2019208 |
[12] |
Rafael López, Óscar Perdomo. Constant-speed ramps for a central force field. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3447-3464. doi: 10.3934/dcds.2021003 |
[13] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[14] |
Zhikun She, Xin Jiang. Threshold dynamics of a general delayed within-host viral infection model with humoral immunity and two modes of virus transmission. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3835-3861. doi: 10.3934/dcdsb.2020259 |
[15] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021098 |
[16] |
Jicheng Liu, Meiling Zhao. Normal deviation of synchronization of stochastic coupled systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021079 |
[17] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
[18] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[19] |
Xiaochun Gu, Fang Han, Zhijie Wang, Kaleem Kashif, Wenlian Lu. Enhancement of gamma oscillations in E/I neural networks by increase of difference between external inputs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021035 |
[20] |
Gelasio Salaza, Edgardo Ugalde, Jesús Urías. Master--slave synchronization of affine cellular automaton pairs. Discrete & Continuous Dynamical Systems, 2005, 13 (2) : 491-502. doi: 10.3934/dcds.2005.13.491 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]