Citation: |
[1] |
N. Alikakos, G. Fusco and V. Stefanopoulos, Critical spectrum and stability of interfaces for a class of reaction-diffusion equations, Journal of Differential Equations, 126 (1996), 106-167.doi: 10.1006/jdeq.1996.0046. |
[2] |
S. B Angenent, J. Mallet-Paret and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, Journal of Differential Equations, 67 (1987), 212-242.doi: 10.1016/0022-0396(87)90147-1. |
[3] |
S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. I, Arch. Rational Mech. Anal., 59 (1975), 159-188. |
[4] |
S. Chow, J. K. Hale and J. Mallet-Paret, Applications of generic bifurcation. II, Arch. Rational Mech. Anal., 62 (1976), 209-235. |
[5] |
P. C. Fife and W. M. Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter, Russian Math. Surveys, 29 (1974), 103-130.doi: 10.1070/RM1974v029n04ABEH001291. |
[6] |
M. Golubitsky and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Volume I, Applied Mathematical Sciences 51, Spring-Verlag, New York 1985.doi: 10.1007/978-1-4612-5034-0. |
[7] |
J. K. Hale and K. Sakamoto, Existence and stability of transition layers, Japan Journal Applied Math., 5 (1988), 367-405.doi: 10.1007/BF03167908. |
[8] |
C. Q. Huang and N. K. Yip, Singular perturbation and bifurcation of diffused transition layers in inhomogeneous media, part I, Networks and Heterogeneous Media, 8 (2013), 1009-1034.doi: 10.3934/nhm.2013.8.1009. |
[9] |
T. Iibun and K. Sakamoto, Internal layer intersecting the boundary of domains in the allen-cahn equation, Japan J. Indust. Appl. Math., 18 (2001), 697-738.doi: 10.1007/BF03167411. |
[10] |
H. Ikeda, Singular perturbation approach to stability properties of traveling wave solutions of reaction-diffusion systems, Hiroshima Math. J., 19 (1989), 587-630. |
[11] |
H. Ikeda, M. Mimura and Y. Nishirura, Global bifurcation phenomena of traveling wave solutions for some bistable reaction-diffusion systems, Nonlinear Analysis, Theory, Method and Application, 13 (1989), 507-526.doi: 10.1016/0362-546X(89)90061-8. |
[12] |
M. Ito, A remark on singular perturbation methods, Hiroshima Math. J., 14 (1985), 619-629. |
[13] |
H. Kokubu, Y. Nishirura and H. Oka, Heteroclinic and homoclinic bifurcations in bistable reaction-diffusion systems, Journal of Differential Equations, 86 (1990), 260-341.doi: 10.1016/0022-0396(90)90033-L. |
[14] |
B. Matkowsky and E. Reiss, Singular perturbations of bifurcations, SIAM J. Appl. Math., 33 (1977), 230-255.doi: 10.1137/0133014. |
[15] |
K. Nakamura, H. Matano, D. Hilhorst and R. Schätzle, Singular limit of a reaction-diffusion equation with a spatially inhomogeneous reaction term, J. Statist. Phys., 95 (1999), 1165-1185.doi: 10.1023/A:1004518904533. |
[16] |
Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555-593.doi: 10.1137/0513037. |
[17] |
Y. Nishiura, Singular limit approach to stability and bifurcation for bistable reaction diffusion systems, Rocky Mountain J. Math., 21 (1991), 727-767.doi: 10.1216/rmjm/1181072964. |
[18] |
M. Taniguchi, A uniform convergence theorem for singular limit eigenvalue problems, Advances in Differential Equations, 8 (2003), 29-54. |
[19] |
M. Taniguchi, A remark on singular perturbation methods via the Lyapunov-Schmidt reduction, Publ. RIMS. Kyoto Univ., 31 (1995), 1001-1010.doi: 10.2977/prims/1195163593. |