March  2016, 11(1): 69-87. doi: 10.3934/nhm.2016.11.69

A shallow water with variable pressure model for blood flow simulation

1. 

Laboratoire J.A. Dieudonné, UMR CNRS 7351 & Polytech Nice Sophia, Université de Nice - Sophia Antipolis, Parc Valrose, 06108 Nice cedex 02, France

2. 

Sorbonne Universités, CNRS and UPMC Université Paris 06, UMR 7190, Institut Jean Le Rond d'Alembert - 4, place Jussieu, Boîte 162, 75005 Paris, France, France, France

Received  April 2015 Revised  September 2015 Published  January 2016

We performed numerical simulations of blood flow in arteries with a variable stiffness and cross-section at rest using a finite volume method coupled with a hydrostatic reconstruction of the variables at the interface of each mesh cell. The method was then validated on examples taken from the literature. Asymptotic solutions were computed to highlight the effect of the viscous and viscoelastic source terms. Finally, the blood flow was computed in an artery where the cross-section at rest and the stiffness were varying. In each test case, the hydrostatic reconstruction showed good results where other simpler schemes did not, generating spurious oscillations and nonphysical velocities.
Citation: Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69
References:
[1]

E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows,, SIAM J. Sci. Comput., 25 (2004), 2050. doi: 10.1137/S1064827503431090. Google Scholar

[2]

A. Bermúdez, A. Dervieux, J.-A. Desideri and M. E. Vázquez, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes,, Computer Methods in Applied Mechanics and Engineering, 155 (1998), 49. doi: 10.1016/S0045-7825(97)85625-3. Google Scholar

[3]

A. Bermúdez and M. E. Vázquez, Upwind methods for hyperbolic conservation laws with source terms,, Computers & Fluids, 23 (1994), 1049. doi: 10.1016/0045-7930(94)90004-3. Google Scholar

[4]

C. Berthon and F. Foucher, Efficient well-balanced hydrostatic upwind schemes for shallow-water equations,, Journal of Computational Physics, 231 (2012), 4993. doi: 10.1016/j.jcp.2012.02.031. Google Scholar

[5]

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources,, volume 2/2004, (2004). doi: 10.1007/b93802. Google Scholar

[6]

F. Bouchut and T. Morales De Luna, A subsonic-well-balanced reconstruction scheme for shallow water flows,, SIAM J. Numer. Anal., 48 (2010), 1733. doi: 10.1137/090758416. Google Scholar

[7]

M.-O. Bristeau and B. Coussin, Boundary Conditions for the Shallow Water Equations Solved by Kinetic Schemes,, Technical Report 4282, (4282). Google Scholar

[8]

M. J. Castro, A. Pardo and C. Parès, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 2055. doi: 10.1142/S021820250700256X. Google Scholar

[9]

N. Cavallini, V. Caleffi and V. Coscia, Finite volume and WENO scheme in one-dimensional vascular system modeling,, Computers and Mathematics with Applications, 56 (2008), 2382. doi: 10.1016/j.camwa.2008.05.039. Google Scholar

[10]

N. Cavallini and V. Coscia, One-dimensional modeling of venous pathologies: Finite volume and WENO schemes,, in Advances in Mathematical Fluid Mechanics (eds, (2010), 147. doi: 10.1007/978-3-642-04068-9_9. Google Scholar

[11]

T. Chacón Rebollo, A. Domínguez Delgado and E. D. Fernández Nieto, Asymptotically balanced schemes for non-homogeneous hyperbolic systems-application to the shallow water equations,, C. R. Acad. Sci. Paris, 338 (2004), 85. doi: 10.1016/j.crma.2003.11.008. Google Scholar

[12]

O. Delestre, Simulation du Ruissellement D'eau de Pluie sur des Surfaces Agricoles/Rain Water Overland Flow on Agricultural Fields Simulation,, Ph.D thesis, (2010). Google Scholar

[13]

O. Delestre and P.-Y. Lagrée, A "well-balanced" finite volume scheme for blood flow simulation,, International Journal for Numerical Methods in Fluids, 72 (2013), 177. doi: 10.1002/fld.3736. Google Scholar

[14]

L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani, Numerical modeling of 1d arterial networks coupled with a lumped parameters description of the heart,, Computer Methods in Biomechanics and Biomedical Engineering, 9 (2006), 273. doi: 10.1080/10255840600857767. Google Scholar

[15]

J.-M. Fullana and S. Zaleski, A branched one-dimensional model of vessel networks,, J. Fluid. Mech., 621 (2009), 183. doi: 10.1017/S0022112008004771. Google Scholar

[16]

T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography,, Computers & Fluids, 32 (2003), 479. doi: 10.1016/S0045-7930(02)00011-7. Google Scholar

[17]

D. L. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation,, Journal of Computational Physics, 227 (2008), 3089. doi: 10.1016/j.jcp.2007.10.027. Google Scholar

[18]

E. Godlewski and P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws,, volume Applied Mathematical Sciences 118, (1996). doi: 10.1007/978-1-4612-0713-9. Google Scholar

[19]

J. M. Greenberg and A.-Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equation,, SIAM Journal on Numerical Analysis, 33 (1996), 1. doi: 10.1137/0733001. Google Scholar

[20]

L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws. Exponential-Fit, Well-balanced and Asymptotic-Preserving,, SIMAI Springer Series 2, (2013). doi: 10.1007/978-88-470-2892-0. Google Scholar

[21]

A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,, SIAM Review, 25 (1983), 35. doi: 10.1137/1025002. Google Scholar

[22]

J. Hou, F. Simons, Q. Liang and R. Hinkelmann, An improved hydrostatic reconstruction method for shallow water model,, Journal of Hydraulic Research, 52 (2014), 432. doi: 10.1080/00221686.2013.858648. Google Scholar

[23]

T. J. R. Hughes and J. Lubliner, On the one-dimensional theory of blood flow in the larger vessels,, Mathematical Biosciences, 18 (1973), 161. doi: 10.1016/0025-5564(73)90027-8. Google Scholar

[24]

S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms,, M2AN, 35 (2001), 631. doi: 10.1051/m2an:2001130. Google Scholar

[25]

T. Katsaounis, B. Perthame and C. Simeoni, Upwinding sources at interfaces in conservation laws,, Applied Mathematics Letters, 17 (2004), 309. doi: 10.1016/S0893-9659(04)90068-7. Google Scholar

[26]

R. Kirkman, T. Moore and C. Adlard, The Walking Dead,, Image Comics, (2003). Google Scholar

[27]

A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system,, Mathematical Modelling and Numerical Analysis, 36 (2002), 397. doi: 10.1051/m2an:2002019. Google Scholar

[28]

R. J. LeVeque, Numerical Methods for Conservation Laws,, Lectures in mathematics ETH Zurich, (1992). doi: 10.1007/978-3-0348-8629-1. Google Scholar

[29]

R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm,, Journal of Computational Physics, 146 (1998), 346. doi: 10.1006/jcph.1998.6058. Google Scholar

[30]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253. Google Scholar

[31]

Q. Liang and F. Marche, Numerical resolution of well-balanced shallow water equations with complex source terms,, Advances in Water Resources, 32 (2009), 873. doi: 10.1016/j.advwatres.2009.02.010. Google Scholar

[32]

J. Lighthill, Waves in Fluids,, Cambridge Mathematical Library, (1978). Google Scholar

[33]

V. Martin, F. Clément, A. Decoene and J.-F. Gerbeau, Parameter identification for a one-dimensional blood flow model,, in ESAIM: PROCEEDINGS (eds, 14 (2005), 174. Google Scholar

[34]

V. Melicher and V. Gajdosík, A numerical solution of a one-dimensional blood flow model-moving grid approach,, Journal of Computational and Applied Mathematics, 215 (2008), 512. doi: 10.1016/j.cam.2006.03.065. Google Scholar

[35]

P. Munz, I. Hudea, J. Imad and R. J. Smith, When zombies attack!: Mathematical modelling of an outbreak of zombie infection,, Infectious Disease Modelling Research Progress, (2009), 133. Google Scholar

[36]

S. Noelle, N. Pankratz, G. Puppo and J. R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows,, Journal of Computational Physics, 213 (2006), 474. doi: 10.1016/j.jcp.2005.08.019. Google Scholar

[37]

S. Noelle, Y. Xing and C. W. Shu, High-order well-balanced finite volume weno schemes for shallow water equation with moving water,, Journal of Computational Physics, 226 (2007), 29. doi: 10.1016/j.jcp.2007.03.031. Google Scholar

[38]

M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,, Annals of Biomedical Engineering, 28 (2000), 1281. doi: 10.1114/1.1326031. Google Scholar

[39]

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term,, Calcolo, 38 (2001), 201. doi: 10.1007/s10092-001-8181-3. Google Scholar

[40]

M. Saito, Y. Ikenaga, M. Matsukawa, Y. Watanabe, T. Asada and P.-Y. Lagrée, One-dimensional model for propagation of a pressure wave in a model of the human arterial network: Comparison of theoretical and experimental,, Journal of Biomechanical Engineering, 133 (2011). doi: 10.1115/1.4005472. Google Scholar

[41]

S. J. Sherwin, L. Formaggia, J. Peiró and V. Franke, Computational modelling of 1d blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system,, International Journal for Numerical Methods in Fluids, 43 (2003), 673. doi: 10.1002/fld.543. Google Scholar

[42]

N. Stergiopulos, D. F. Young and T. R. Rogge, Computer simulation of arterial flow with applications to arterial and aortic stenoses,, J. Biomechanics, 25 (1992), 1477. doi: 10.1016/0021-9290(92)90060-E. Google Scholar

[43]

J. C. Stettler, P. Niederer and M. Anliker, Theoretical analysis of arterial hemodynamics including the influence of bifurcations - part i: Mathematical model and prediction of normal pulse patterns,, Annals of Biomedical Engineering, 9 (1981), 145. doi: 10.1007/BF02363533. Google Scholar

[44]

M. D. Thanh, M. Fazlul Karim and A. I. M. Ismail, Well-balanced scheme for shallow water equations with arbitrary topography,, Int. J. Dynamical Systems and Differential Equations, 1 (2008), 196. doi: 10.1504/IJDSDE.2008.019681. Google Scholar

[45]

E. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows,, John Wiley and Sons Ltd., (2001). Google Scholar

[46]

X. Wang, O. Delestre, J.-M. Fullana, M. Saito, Y. Ikenaga, M. Matsukawa and P.-Y. Lagrée, Comparing different numerical methods for solving arterial 1d flows in networks,, Computer Methods in Biomechanics and Biomedical Engineering, 15 (2012), 61. doi: 10.1080/10255842.2012.713677. Google Scholar

[47]

X. Wang, J.-M. Fullana and P.-Y. Lagrée, Verification and comparison of four numerical schemes for a 1d viscoelastic blood flow model,, Computer Methods in Biomechanics and Biomedical Engineering, 18 (2015), 1704. doi: 10.1080/10255842.2014.948428. Google Scholar

[48]

M. Willemet, V. Lacroix and E. Marchandise, Inlet boundary conditions for blood flow simulations in truncated arterial networks,, Journal of Biomechanics, 44 (2011), 897. doi: 10.1016/j.jbiomech.2010.11.036. Google Scholar

[49]

D. Xiu and S. J. Sherwin, Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network,, Journal of Computational Physics, 226 (2007), 1385. doi: 10.1016/j.jcp.2007.05.020. Google Scholar

[50]

M. Zagzoule, J. Khalid-Naciri and J. Mauss, Unsteady wall shear stress in a distensible tube,, J. Biomechanics, 24 (1991), 435. doi: 10.1016/0021-9290(91)90031-H. Google Scholar

[51]

M. Zagzoule and J.-P. Marc-Vergnes, A global mathematical model of the cerebral circulation in man,, J. Biomechanics, 19 (1986), 1015. doi: 10.1016/0021-9290(86)90118-1. Google Scholar

show all references

References:
[1]

E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows,, SIAM J. Sci. Comput., 25 (2004), 2050. doi: 10.1137/S1064827503431090. Google Scholar

[2]

A. Bermúdez, A. Dervieux, J.-A. Desideri and M. E. Vázquez, Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes,, Computer Methods in Applied Mechanics and Engineering, 155 (1998), 49. doi: 10.1016/S0045-7825(97)85625-3. Google Scholar

[3]

A. Bermúdez and M. E. Vázquez, Upwind methods for hyperbolic conservation laws with source terms,, Computers & Fluids, 23 (1994), 1049. doi: 10.1016/0045-7930(94)90004-3. Google Scholar

[4]

C. Berthon and F. Foucher, Efficient well-balanced hydrostatic upwind schemes for shallow-water equations,, Journal of Computational Physics, 231 (2012), 4993. doi: 10.1016/j.jcp.2012.02.031. Google Scholar

[5]

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well-Balanced Schemes for Sources,, volume 2/2004, (2004). doi: 10.1007/b93802. Google Scholar

[6]

F. Bouchut and T. Morales De Luna, A subsonic-well-balanced reconstruction scheme for shallow water flows,, SIAM J. Numer. Anal., 48 (2010), 1733. doi: 10.1137/090758416. Google Scholar

[7]

M.-O. Bristeau and B. Coussin, Boundary Conditions for the Shallow Water Equations Solved by Kinetic Schemes,, Technical Report 4282, (4282). Google Scholar

[8]

M. J. Castro, A. Pardo and C. Parès, Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique,, Mathematical Models and Methods in Applied Sciences, 17 (2007), 2055. doi: 10.1142/S021820250700256X. Google Scholar

[9]

N. Cavallini, V. Caleffi and V. Coscia, Finite volume and WENO scheme in one-dimensional vascular system modeling,, Computers and Mathematics with Applications, 56 (2008), 2382. doi: 10.1016/j.camwa.2008.05.039. Google Scholar

[10]

N. Cavallini and V. Coscia, One-dimensional modeling of venous pathologies: Finite volume and WENO schemes,, in Advances in Mathematical Fluid Mechanics (eds, (2010), 147. doi: 10.1007/978-3-642-04068-9_9. Google Scholar

[11]

T. Chacón Rebollo, A. Domínguez Delgado and E. D. Fernández Nieto, Asymptotically balanced schemes for non-homogeneous hyperbolic systems-application to the shallow water equations,, C. R. Acad. Sci. Paris, 338 (2004), 85. doi: 10.1016/j.crma.2003.11.008. Google Scholar

[12]

O. Delestre, Simulation du Ruissellement D'eau de Pluie sur des Surfaces Agricoles/Rain Water Overland Flow on Agricultural Fields Simulation,, Ph.D thesis, (2010). Google Scholar

[13]

O. Delestre and P.-Y. Lagrée, A "well-balanced" finite volume scheme for blood flow simulation,, International Journal for Numerical Methods in Fluids, 72 (2013), 177. doi: 10.1002/fld.3736. Google Scholar

[14]

L. Formaggia, D. Lamponi, M. Tuveri and A. Veneziani, Numerical modeling of 1d arterial networks coupled with a lumped parameters description of the heart,, Computer Methods in Biomechanics and Biomedical Engineering, 9 (2006), 273. doi: 10.1080/10255840600857767. Google Scholar

[15]

J.-M. Fullana and S. Zaleski, A branched one-dimensional model of vessel networks,, J. Fluid. Mech., 621 (2009), 183. doi: 10.1017/S0022112008004771. Google Scholar

[16]

T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography,, Computers & Fluids, 32 (2003), 479. doi: 10.1016/S0045-7930(02)00011-7. Google Scholar

[17]

D. L. George, Augmented Riemann solvers for the shallow water equations over variable topography with steady states and inundation,, Journal of Computational Physics, 227 (2008), 3089. doi: 10.1016/j.jcp.2007.10.027. Google Scholar

[18]

E. Godlewski and P.-A. Raviart, Numerical Approximations of Hyperbolic Systems of Conservation Laws,, volume Applied Mathematical Sciences 118, (1996). doi: 10.1007/978-1-4612-0713-9. Google Scholar

[19]

J. M. Greenberg and A.-Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equation,, SIAM Journal on Numerical Analysis, 33 (1996), 1. doi: 10.1137/0733001. Google Scholar

[20]

L. Gosse, Computing Qualitatively Correct Approximations of Balance Laws. Exponential-Fit, Well-balanced and Asymptotic-Preserving,, SIMAI Springer Series 2, (2013). doi: 10.1007/978-88-470-2892-0. Google Scholar

[21]

A. Harten, P. D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,, SIAM Review, 25 (1983), 35. doi: 10.1137/1025002. Google Scholar

[22]

J. Hou, F. Simons, Q. Liang and R. Hinkelmann, An improved hydrostatic reconstruction method for shallow water model,, Journal of Hydraulic Research, 52 (2014), 432. doi: 10.1080/00221686.2013.858648. Google Scholar

[23]

T. J. R. Hughes and J. Lubliner, On the one-dimensional theory of blood flow in the larger vessels,, Mathematical Biosciences, 18 (1973), 161. doi: 10.1016/0025-5564(73)90027-8. Google Scholar

[24]

S. Jin, A steady-state capturing method for hyperbolic systems with geometrical source terms,, M2AN, 35 (2001), 631. doi: 10.1051/m2an:2001130. Google Scholar

[25]

T. Katsaounis, B. Perthame and C. Simeoni, Upwinding sources at interfaces in conservation laws,, Applied Mathematics Letters, 17 (2004), 309. doi: 10.1016/S0893-9659(04)90068-7. Google Scholar

[26]

R. Kirkman, T. Moore and C. Adlard, The Walking Dead,, Image Comics, (2003). Google Scholar

[27]

A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system,, Mathematical Modelling and Numerical Analysis, 36 (2002), 397. doi: 10.1051/m2an:2002019. Google Scholar

[28]

R. J. LeVeque, Numerical Methods for Conservation Laws,, Lectures in mathematics ETH Zurich, (1992). doi: 10.1007/978-3-0348-8629-1. Google Scholar

[29]

R. J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm,, Journal of Computational Physics, 146 (1998), 346. doi: 10.1006/jcph.1998.6058. Google Scholar

[30]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems,, Cambridge Texts in Applied Mathematics, (2002). doi: 10.1017/CBO9780511791253. Google Scholar

[31]

Q. Liang and F. Marche, Numerical resolution of well-balanced shallow water equations with complex source terms,, Advances in Water Resources, 32 (2009), 873. doi: 10.1016/j.advwatres.2009.02.010. Google Scholar

[32]

J. Lighthill, Waves in Fluids,, Cambridge Mathematical Library, (1978). Google Scholar

[33]

V. Martin, F. Clément, A. Decoene and J.-F. Gerbeau, Parameter identification for a one-dimensional blood flow model,, in ESAIM: PROCEEDINGS (eds, 14 (2005), 174. Google Scholar

[34]

V. Melicher and V. Gajdosík, A numerical solution of a one-dimensional blood flow model-moving grid approach,, Journal of Computational and Applied Mathematics, 215 (2008), 512. doi: 10.1016/j.cam.2006.03.065. Google Scholar

[35]

P. Munz, I. Hudea, J. Imad and R. J. Smith, When zombies attack!: Mathematical modelling of an outbreak of zombie infection,, Infectious Disease Modelling Research Progress, (2009), 133. Google Scholar

[36]

S. Noelle, N. Pankratz, G. Puppo and J. R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows,, Journal of Computational Physics, 213 (2006), 474. doi: 10.1016/j.jcp.2005.08.019. Google Scholar

[37]

S. Noelle, Y. Xing and C. W. Shu, High-order well-balanced finite volume weno schemes for shallow water equation with moving water,, Journal of Computational Physics, 226 (2007), 29. doi: 10.1016/j.jcp.2007.03.031. Google Scholar

[38]

M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim and J. Larsen, Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions,, Annals of Biomedical Engineering, 28 (2000), 1281. doi: 10.1114/1.1326031. Google Scholar

[39]

B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term,, Calcolo, 38 (2001), 201. doi: 10.1007/s10092-001-8181-3. Google Scholar

[40]

M. Saito, Y. Ikenaga, M. Matsukawa, Y. Watanabe, T. Asada and P.-Y. Lagrée, One-dimensional model for propagation of a pressure wave in a model of the human arterial network: Comparison of theoretical and experimental,, Journal of Biomechanical Engineering, 133 (2011). doi: 10.1115/1.4005472. Google Scholar

[41]

S. J. Sherwin, L. Formaggia, J. Peiró and V. Franke, Computational modelling of 1d blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system,, International Journal for Numerical Methods in Fluids, 43 (2003), 673. doi: 10.1002/fld.543. Google Scholar

[42]

N. Stergiopulos, D. F. Young and T. R. Rogge, Computer simulation of arterial flow with applications to arterial and aortic stenoses,, J. Biomechanics, 25 (1992), 1477. doi: 10.1016/0021-9290(92)90060-E. Google Scholar

[43]

J. C. Stettler, P. Niederer and M. Anliker, Theoretical analysis of arterial hemodynamics including the influence of bifurcations - part i: Mathematical model and prediction of normal pulse patterns,, Annals of Biomedical Engineering, 9 (1981), 145. doi: 10.1007/BF02363533. Google Scholar

[44]

M. D. Thanh, M. Fazlul Karim and A. I. M. Ismail, Well-balanced scheme for shallow water equations with arbitrary topography,, Int. J. Dynamical Systems and Differential Equations, 1 (2008), 196. doi: 10.1504/IJDSDE.2008.019681. Google Scholar

[45]

E. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows,, John Wiley and Sons Ltd., (2001). Google Scholar

[46]

X. Wang, O. Delestre, J.-M. Fullana, M. Saito, Y. Ikenaga, M. Matsukawa and P.-Y. Lagrée, Comparing different numerical methods for solving arterial 1d flows in networks,, Computer Methods in Biomechanics and Biomedical Engineering, 15 (2012), 61. doi: 10.1080/10255842.2012.713677. Google Scholar

[47]

X. Wang, J.-M. Fullana and P.-Y. Lagrée, Verification and comparison of four numerical schemes for a 1d viscoelastic blood flow model,, Computer Methods in Biomechanics and Biomedical Engineering, 18 (2015), 1704. doi: 10.1080/10255842.2014.948428. Google Scholar

[48]

M. Willemet, V. Lacroix and E. Marchandise, Inlet boundary conditions for blood flow simulations in truncated arterial networks,, Journal of Biomechanics, 44 (2011), 897. doi: 10.1016/j.jbiomech.2010.11.036. Google Scholar

[49]

D. Xiu and S. J. Sherwin, Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network,, Journal of Computational Physics, 226 (2007), 1385. doi: 10.1016/j.jcp.2007.05.020. Google Scholar

[50]

M. Zagzoule, J. Khalid-Naciri and J. Mauss, Unsteady wall shear stress in a distensible tube,, J. Biomechanics, 24 (1991), 435. doi: 10.1016/0021-9290(91)90031-H. Google Scholar

[51]

M. Zagzoule and J.-P. Marc-Vergnes, A global mathematical model of the cerebral circulation in man,, J. Biomechanics, 19 (1986), 1015. doi: 10.1016/0021-9290(86)90118-1. Google Scholar

[1]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[2]

Boris Andreianov, Nicolas Seguin. Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1939-1964. doi: 10.3934/dcds.2012.32.1939

[3]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[4]

Marie-Odile Bristeau, Jacques Sainte-Marie. Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 733-759. doi: 10.3934/dcdsb.2008.10.733

[5]

Laurent Gosse. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension. Kinetic & Related Models, 2012, 5 (2) : 283-323. doi: 10.3934/krm.2012.5.283

[6]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[7]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[8]

Mouhamadou Aliou M. T. Baldé, Diaraf Seck. Coupling the shallow water equation with a long term dynamics of sand dunes. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1521-1551. doi: 10.3934/dcdss.2016061

[9]

Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks & Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401

[10]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[11]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[12]

Derek H. Justice, H. Joel Trussell, Mette S. Olufsen. Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method. Mathematical Biosciences & Engineering, 2006, 3 (2) : 419-440. doi: 10.3934/mbe.2006.3.419

[13]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

[14]

Bogdan-Vasile Matioc. A characterization of the symmetric steady water waves in terms of the underlying flow. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3125-3133. doi: 10.3934/dcds.2014.34.3125

[15]

Jitraj Saha, Nilima Das, Jitendra Kumar, Andreas Bück. Numerical solutions for multidimensional fragmentation problems using finite volume methods. Kinetic & Related Models, 2019, 12 (1) : 79-103. doi: 10.3934/krm.2019004

[16]

Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107

[17]

Zhangxin Chen. On the control volume finite element methods and their applications to multiphase flow. Networks & Heterogeneous Media, 2006, 1 (4) : 689-706. doi: 10.3934/nhm.2006.1.689

[18]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[19]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[20]

Jean-Frédéric Gerbeau, Benoit Perthame. Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 89-102. doi: 10.3934/dcdsb.2001.1.89

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

[Back to Top]