2016, 11(4): 693-719. doi: 10.3934/nhm.2016014

An epidemic model with nonlocal diffusion on networks

1. 

University of Cergy-Pontoise, Department of Mathematics, UMR CNRS 8088, Cergy-Pontoise, F-95000

2. 

University of Cergy-Pontoise, Department of Mathematics, UMR CNRS 8088, F-95000 Cergy-Pontoise, France

Received  November 2015 Revised  February 2016 Published  October 2016

We consider a SIS system with nonlocal diffusion which is the continuous version of a discrete model for the propagation of epidemics on a metapopulation network. Under the assumption of limited transmission, we prove the global existence of a unique solution for any diffusion coefficients. We investigate the existence of an endemic equilibrium and prove its linear stability, which corresponds to the loss of stability of the disease-free equilibrium. In the case of equal diffusion coefficients, we reduce the system to a Fisher-type equation with nonlocal diffusion, which allows us to study the large time behaviour of the solutions. We show large time convergence to either the disease-free or the endemic equilibrium.
Citation: Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014
References:
[1]

V. Colizza, R. Pastor-Sattoras and A. Vespignani, Reaction-diffusion processes and meta-population models in heterogeneous networks,, Nat. Phys., 3 (2007), 276.

[2]

V. Colizza and A. Vespignani, Invasion threshold in heterogeneous metapopulation networks,, Phys. Rev. Lett., 99 (2007). doi: 10.1103/PhysRevLett.99.148701.

[3]

V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations,, J. Theor. Biol., 251 (2008), 450. doi: 10.1016/j.jtbi.2007.11.028.

[4]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000).

[5]

S. N. Dorogotsev and J. F. F. Mendes, Scaling properties of scale-free evolving networks: Continuous approach,, Phys. Rev. E, 63 (2001).

[6]

S. N. Dorogotsev and J. F. F. Mendes, Evolution of networks,, Adv. Phys., 51 (2002).

[7]

I. Hanski, A practical model of metapopulation dynamics,, J. Animal Ecology, 63 (1994), 151. doi: 10.2307/5591.

[8]

I. Hanski, Metapopulation dynamics,, Metapopulation Biology, (1997), 69. doi: 10.1016/B978-012323445-2/50007-9.

[9]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599. doi: 10.1137/S0036144500371907.

[10]

D. Juher, J. Ripoll and J. Saldana, Analysis and monte carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulation,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.041920.

[11]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295. doi: 10.1098/rsif.2005.0051.

[12]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control,, Bull. Entomology Soc. of America, 71 (1969), 237. doi: 10.1093/besa/15.3.237.

[13]

E. Logak and I. Passat, A nonlocal model for epidemics on networks in the case of nonlimited transmission,, preprint., ().

[14]

M. E. J. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167. doi: 10.1137/S003614450342480.

[15]

R. Pastor-Sattoras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks,, Rev. Mod. Phys., 87 (2015), 925. doi: 10.1103/RevModPhys.87.925.

[16]

R. Pastor-Sattoras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Lett., 86 (2001). doi: 10.1103/PhysRevLett.86.3200.

[17]

J. Saldana, Continous-time formulation of reaction-diffusion processes on heterogeneous metapopulations,, Phys. Rev. E, 78 (2008).

[18]

J. Saldana, Analysis and Monte-Carlo simulations of a model for spread of infectious diseases in heterogeneous metapopulations,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.041920.

[19]

J. Saldana, Modelling the spread of infectious diseases in complex metapopulations,, Math. Model. Nat. Phenom., 5 (2010), 22. doi: 10.1051/mmnp/20105602.

show all references

References:
[1]

V. Colizza, R. Pastor-Sattoras and A. Vespignani, Reaction-diffusion processes and meta-population models in heterogeneous networks,, Nat. Phys., 3 (2007), 276.

[2]

V. Colizza and A. Vespignani, Invasion threshold in heterogeneous metapopulation networks,, Phys. Rev. Lett., 99 (2007). doi: 10.1103/PhysRevLett.99.148701.

[3]

V. Colizza and A. Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations,, J. Theor. Biol., 251 (2008), 450. doi: 10.1016/j.jtbi.2007.11.028.

[4]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, Wiley, (2000).

[5]

S. N. Dorogotsev and J. F. F. Mendes, Scaling properties of scale-free evolving networks: Continuous approach,, Phys. Rev. E, 63 (2001).

[6]

S. N. Dorogotsev and J. F. F. Mendes, Evolution of networks,, Adv. Phys., 51 (2002).

[7]

I. Hanski, A practical model of metapopulation dynamics,, J. Animal Ecology, 63 (1994), 151. doi: 10.2307/5591.

[8]

I. Hanski, Metapopulation dynamics,, Metapopulation Biology, (1997), 69. doi: 10.1016/B978-012323445-2/50007-9.

[9]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599. doi: 10.1137/S0036144500371907.

[10]

D. Juher, J. Ripoll and J. Saldana, Analysis and monte carlo simulations of a model for the spread of infectious diseases in heterogeneous metapopulation,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.041920.

[11]

M. J. Keeling and K. T. D. Eames, Networks and epidemic models,, J. R. Soc. Interface, 2 (2005), 295. doi: 10.1098/rsif.2005.0051.

[12]

R. Levins, Some demographic and genetic consequences of environmental heterogeneity for biological control,, Bull. Entomology Soc. of America, 71 (1969), 237. doi: 10.1093/besa/15.3.237.

[13]

E. Logak and I. Passat, A nonlocal model for epidemics on networks in the case of nonlimited transmission,, preprint., ().

[14]

M. E. J. Newman, The structure and function of complex networks,, SIAM Rev., 45 (2003), 167. doi: 10.1137/S003614450342480.

[15]

R. Pastor-Sattoras, C. Castellano, P. Van Mieghem and A. Vespignani, Epidemic processes in complex networks,, Rev. Mod. Phys., 87 (2015), 925. doi: 10.1103/RevModPhys.87.925.

[16]

R. Pastor-Sattoras and A. Vespignani, Epidemic spreading in scale-free networks,, Phys. Rev. Lett., 86 (2001). doi: 10.1103/PhysRevLett.86.3200.

[17]

J. Saldana, Continous-time formulation of reaction-diffusion processes on heterogeneous metapopulations,, Phys. Rev. E, 78 (2008).

[18]

J. Saldana, Analysis and Monte-Carlo simulations of a model for spread of infectious diseases in heterogeneous metapopulations,, Phys. Rev. E, 80 (2009). doi: 10.1103/PhysRevE.80.041920.

[19]

J. Saldana, Modelling the spread of infectious diseases in complex metapopulations,, Math. Model. Nat. Phenom., 5 (2010), 22. doi: 10.1051/mmnp/20105602.

[1]

Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

[2]

Nancy Azer, P. van den Driessche. Competition and Dispersal Delays in Patchy Environments. Mathematical Biosciences & Engineering, 2006, 3 (2) : 283-296. doi: 10.3934/mbe.2006.3.283

[3]

Meihong Qiao, Anping Liu, Qing Tang. The dynamics of an HBV epidemic model on complex heterogeneous networks. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1393-1404. doi: 10.3934/dcdsb.2015.20.1393

[4]

Péter L. Simon, Istvan Z. Kiss. On bounding exact models of epidemic spread on networks. Discrete & Continuous Dynamical Systems - B, 2018, 23 (5) : 2005-2020. doi: 10.3934/dcdsb.2018192

[5]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[6]

Shouying Huang, Jifa Jiang. Epidemic dynamics on complex networks with general infection rate and immune strategies. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2071-2090. doi: 10.3934/dcdsb.2018226

[7]

Christian Kuehn, Pasha Tkachov. Pattern formation in the doubly-nonlocal Fisher-KPP equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2077-2100. doi: 10.3934/dcds.2019087

[8]

Xiao-Qiang Zhao, Wendi Wang. Fisher waves in an epidemic model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1117-1128. doi: 10.3934/dcdsb.2004.4.1117

[9]

Takanori Ide, Kazuhiro Kurata, Kazunaga Tanaka. Multiple stable patterns for some reaction-diffusion equation in disrupted environments. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 93-116. doi: 10.3934/dcds.2006.14.93

[10]

Bin-Guo Wang, Wan-Tong Li, Lizhong Qiang. An almost periodic epidemic model in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 271-289. doi: 10.3934/dcdsb.2016.21.271

[11]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[12]

Rosa M. Benito, Regino Criado, Juan C. Losada, Miguel Romance. Preface: "New trends, models and applications in complex and multiplex networks". Networks & Heterogeneous Media, 2015, 10 (1) : i-iii. doi: 10.3934/nhm.2015.10.1i

[13]

J. García-Melián, Julio D. Rossi. A logistic equation with refuge and nonlocal diffusion. Communications on Pure & Applied Analysis, 2009, 8 (6) : 2037-2053. doi: 10.3934/cpaa.2009.8.2037

[14]

Fang Li, Jerome Coville, Xuefeng Wang. On eigenvalue problems arising from nonlocal diffusion models. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 879-903. doi: 10.3934/dcds.2017036

[15]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[16]

Bin-Guo Wang, Wan-Tong Li, Liang Zhang. An almost periodic epidemic model with age structure in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 291-311. doi: 10.3934/dcdsb.2016.21.291

[17]

Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516

[18]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[19]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[20]

B. Ambrosio, M. A. Aziz-Alaoui, V. L. E. Phan. Global attractor of complex networks of reaction-diffusion systems of Fitzhugh-Nagumo type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3787-3797. doi: 10.3934/dcdsb.2018077

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]