June  2017, 12(2): 245-258. doi: 10.3934/nhm.2017010

Stability estimates for scalar conservation laws with moving flux constraints

1. 

Department of mathematical sciences, Rutgers University -Camden, 311 N. 5th Street, Camden, NJ 08102, USA

2. 

Inria, Univ. Grenoble Alpes, CNRS, GIPSA-lab, F-38000 Grenoble, France

3. 

Inria Sophia Antipolis -Méditerranée, Université Côte d'Azur, Inria, CNRS, LJAD, 2004, route des Lucioles -BP 93, 06902 Sophia Antipolis Cedex, France

* Corresponding author: Paola Goatin

Received  October 2016 Revised  January 2017 Published  May 2017

Fund Project: This research was supported by the Inria Associated Team "Optimal REroute Strategies for Traffic managEment" (ORESTE).

We study well-posedness of scalar conservation laws with moving flux constraints. In particular, we show the Lipschitz continuous dependence of BV solutions with respect to the initial data and the constraint trajectory. Applications to traffic flow theory are detailed.

Citation: Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints. Networks & Heterogeneous Media, 2017, 12 (2) : 245-258. doi: 10.3934/nhm.2017010
References:
[1]

AdimurthiR. DuttaS. S. Ghoshal and G. D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (2011), 84-115.  doi: 10.1002/cpa.20346.  Google Scholar

[2]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., 12 (2015), 259-278.   Google Scholar

[3]

B. AndreianovC. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802.  doi: 10.1142/S0218202516500172.  Google Scholar

[4]

B. AndreianovP. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645, With supplementary material available online.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[5]

B. AndreianovK. H. Karlsen and N. H. Risebro, A theory of $ L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[6]

B. AndreianovF. LagoutièreN. Seguin and T. Takahashi, Well-posedness for a one-dimensional fluid-particle interaction model, SIAM J. Math. Anal., 46 (2014), 1030-1052.  doi: 10.1137/130907963.  Google Scholar

[7]

F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), 2847-2870.  doi: 10.1090/S0002-9947-98-02204-1.  Google Scholar

[8]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.  Google Scholar

[9]

A. Bressan and W. Shen, Uniqueness for discontinuous ODE and conservation laws, Nonlinear Anal., 34 (1998), 637-652.  doi: 10.1016/S0362-546X(97)00590-7.  Google Scholar

[10]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[11]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759-772.  doi: 10.1017/S0308210500002663.  Google Scholar

[12]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, J. Differential Equations, 257 (2014), 4015-4029.  doi: 10.1016/j.jde.2014.07.014.  Google Scholar

[13]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[14]

M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, Preprint, 2016. Google Scholar

[15]

S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.   Google Scholar

[16]

S. Villa, P. Goatin and C. Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2016, URL https://hal.archives-ouvertes.fr/hal-01347925, preprint. Google Scholar

show all references

References:
[1]

AdimurthiR. DuttaS. S. Ghoshal and G. D. Veerappa Gowda, Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math., 64 (2011), 84-115.  doi: 10.1002/cpa.20346.  Google Scholar

[2]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., 12 (2015), 259-278.   Google Scholar

[3]

B. AndreianovC. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802.  doi: 10.1142/S0218202516500172.  Google Scholar

[4]

B. AndreianovP. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645, With supplementary material available online.  doi: 10.1007/s00211-009-0286-7.  Google Scholar

[5]

B. AndreianovK. H. Karlsen and N. H. Risebro, A theory of $ L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86.  doi: 10.1007/s00205-010-0389-4.  Google Scholar

[6]

B. AndreianovF. LagoutièreN. Seguin and T. Takahashi, Well-posedness for a one-dimensional fluid-particle interaction model, SIAM J. Math. Anal., 46 (2014), 1030-1052.  doi: 10.1137/130907963.  Google Scholar

[7]

F. Bouchut and B. Perthame, Kružkov's estimates for scalar conservation laws revisited, Trans. Amer. Math. Soc., 350 (1998), 2847-2870.  doi: 10.1090/S0002-9947-98-02204-1.  Google Scholar

[8]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.  Google Scholar

[9]

A. Bressan and W. Shen, Uniqueness for discontinuous ODE and conservation laws, Nonlinear Anal., 34 (1998), 637-652.  doi: 10.1016/S0362-546X(97)00590-7.  Google Scholar

[10]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675.  doi: 10.1016/j.jde.2006.10.014.  Google Scholar

[11]

R. M. Colombo and A. Marson, A Hölder continuous ODE related to traffic flow, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 759-772.  doi: 10.1017/S0308210500002663.  Google Scholar

[12]

M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, J. Differential Equations, 257 (2014), 4015-4029.  doi: 10.1016/j.jde.2014.07.014.  Google Scholar

[13]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648.  doi: 10.1016/j.jmaa.2011.01.033.  Google Scholar

[14]

M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, Preprint, 2016. Google Scholar

[15]

S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.   Google Scholar

[16]

S. Villa, P. Goatin and C. Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2016, URL https://hal.archives-ouvertes.fr/hal-01347925, preprint. Google Scholar

Figure 1.  Graphical representation of the constraint action in the fixed (left) and moving (right) reference frames
Figure 2.  The set $\mathcal{G}_\alpha (\dot{y})$ (thick lines) in the case of a flux function of the form $f(\rho)=V\rho(1-\rho/R)$, as in Section 3
Figure 3.  Bus and cars speed
Figure 4.  Different solutions of the Riemann problem (17). Each subfigure illustrates a point of the Definition 3.2: fundamental diagram representation (left) and space-time diagram (right)
Figure 5.  Case 1
Figure 6.  Case 2
Figure 7.  Case 3
[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[3]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[4]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[5]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[6]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[7]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[8]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[9]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[10]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[12]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[16]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[17]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

2019 Impact Factor: 1.053

Metrics

  • PDF downloads (55)
  • HTML views (48)
  • Cited by (5)

Other articles
by authors

[Back to Top]