June 2017, 12(2): 297-317. doi: 10.3934/nhm.2017013

A macroscopic traffic model with phase transitions and local point constraints on the flow

1. 

Gran Sasso Science Institute, Viale F. Crispi 7,67100 L'Aquila, Italy

2. 

Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej, Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland

* Corresponding author: Massimiliano D. Rosini

Received  November 2016 Revised  January 2017 Published  May 2017

In this paper we present a macroscopic phase transition model with a local point constraint on the flow. Its motivation is, for instance, the modelling of the evolution of vehicular traffic along a road with pointlike inhomogeneities characterized by limited capacity, such as speed bumps, traffic lights, construction sites, toll booths, etc. The model accounts for two different phases, according to whether the traffic is low or heavy. Away from the inhomogeneities of the road the traffic is described by a first order model in the free-flow phase and by a second order model in the congested phase. To model the effects of the inhomogeneities we propose two Riemann solvers satisfying the point constraints on the flow.

Citation: Mohamed Benyahia, Massimiliano D. Rosini. A macroscopic traffic model with phase transitions and local point constraints on the flow. Networks & Heterogeneous Media, 2017, 12 (2) : 297-317. doi: 10.3934/nhm.2017013
References:
[1]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., 12 (2015), 259-278.

[2]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN, 50 (2016), 1269-1287. doi: 10.1051/m2an/2015078.

[3]

B. AndreianovC. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Models Methods Appl. Sci., 24 (2014), 2685-2722. doi: 10.1142/S0218202514500341.

[4]

B. AndreianovC. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802. doi: 10.1142/S0218202516500172.

[5]

B. AndreianovP. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645, With supplementary material available online. doi: 10.1007/s00211-009-0286-7.

[6]

B. P. AndreianovC. DonadelloU. RazafisonJ. Y. Rolland and M. D. Rosini, Solutions of the Aw-Rascle-Zhang system with point constraints, Netw. Heterog. Media, 11 (2016), 29-47. doi: 10.3934/nhm.2016.11.29.

[7]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938 (electronic). doi: 10.1137/S0036139997332099.

[8]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677.

[9]

M. Benyahia and M. D. Rosini, Entropy solutions for a traffic model with phase transitions, Nonlinear Anal., 141 (2016), 167-190. doi: 10.1016/j.na.2016.04.011.

[10]

S. BlandinD. WorkP. GoatinB. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467.

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.

[12]

C. Cancés and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws, SIAM J. Numer. Anal., 50 (2012), 3036-3060. doi: 10.1137/110836912.

[13]

C. Chalons and P. Goatin, Computing phase transitions arising in traffic flow modeling, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008,559–566. doi: 10.1007/978-3-540-75712-2_54.

[14]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10 (2008), 197-221. doi: 10.4171/IFB/186.

[15]

C. ChalonsP. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling, Netw. Heterog. Media, 8 (2013), 433-463. doi: 10.3934/nhm.2013.8.433.

[16]

R. M. Colombo and M. Garavello, Phase transition model for traffic at a junction, J. Math. Sci. (N. Y.), 196 (2014), 30-36. doi: 10.1007/s10958-013-1631-z.

[17]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708–721 (electronic). doi: 10.1137/S0036139901393184.

[18]

R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in Analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003,1279–1287.

[19]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014.

[20]

R. M. ColomboP. Goatin and B. Piccoli, Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106. doi: 10.1142/S0219891610002025.

[21]

R. M. ColomboP. Goatin and F. S. Priuli, Global well posedness of traffic flow models with phase transitions, Nonlinear Anal., 66 (2007), 2413-2426. doi: 10.1016/j.na.2006.03.029.

[22]

R. M. ColomboP. Goatin and M. D. Rosini, On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872. doi: 10.1051/m2an/2010105.

[23]

R. M. ColomboF. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468.

[24]

E. Dal Santo, M. D. Rosini, N. Dymski and M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, arXiv preprint, arXiv: 1608.04932.

[25]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648. doi: 10.1016/j.jmaa.2011.01.033.

[26]

M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, 2016, URL https://www.math.ntnu.no/conservation/2016/007.pdf.

[27]

M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, vol. 9 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016, Conservation laws models.

[28]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275. doi: 10.1080/03605300500358053.

[29]

M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models.

[30]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636. doi: 10.1142/S0219891613500215.

[31]

M. Garavello and B. Piccoli, Coupling of microscopic and phase transition models at boundary, Netw. Heterog. Media, 8 (2013), 649-661. doi: 10.3934/nhm.2013.8.649.

[32]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303. doi: 10.1016/j.mcm.2006.01.016.

[33]

P. Goatin, Traffic flow models with phase transitions on road networks, Netw. Heterog. Media, 4 (2009), 287-301. doi: 10.3934/nhm.2009.4.287.

[34]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, 2nd edition, Springer, Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2.

[35]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, in Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 229 (1955), 317–345. doi: 10.1098/rspa.1955.0089.

[36]

R. Mohan and G. Ramadurai, State-of-the art of macroscopic traffic flow modelling, Int. J. Adv. Eng. Sci. Appl. Math., 5 (2013), 158-176. doi: 10.1007/s12572-013-0087-1.

[37]

L. Pan and X. Han, The generalized Riemann problem for the Aw-Rascle model with phase transitions, J. Math. Anal. Appl., 389 (2012), 685-693. doi: 10.1016/j.jmaa.2011.11.081.

[38]

L. Pan and X. Han, The global solution of the interaction problem for the Aw-Rascle model with phase transitions, Math. Methods Appl. Sci., 35 (2012), 1700-1711. doi: 10.1002/mma.2552.

[39]

B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models, in Mathematics of complexity and dynamical systems. Vols. 1–3, Springer, New York, 2012, 1748–1770. doi: 10.1007/978-1-4614-1806-1_112.

[40]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[41]

M. D. Rosini, The initial-boundary value problem and the constraint, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, (2013), 63-91. doi: 10.1007/978-3-319-00155-5_6.

[42]

M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013. doi: 10.1007/978-3-319-00155-5.

[43]

H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3.

show all references

References:
[1]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Riemann problems with non-local point constraints and capacity drop, Math. Biosci. Eng., 12 (2015), 259-278.

[2]

B. AndreianovC. DonadelloU. Razafison and M. D. Rosini, Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the flux and modeling of crowd dynamics at the bottlenecks, ESAIM: M2AN, 50 (2016), 1269-1287. doi: 10.1051/m2an/2015078.

[3]

B. AndreianovC. Donadello and M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Models Methods Appl. Sci., 24 (2014), 2685-2722. doi: 10.1142/S0218202514500341.

[4]

B. AndreianovC. Donadello and M. D. Rosini, A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci., 26 (2016), 751-802. doi: 10.1142/S0218202516500172.

[5]

B. AndreianovP. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, Numer. Math., 115 (2010), 609-645, With supplementary material available online. doi: 10.1007/s00211-009-0286-7.

[6]

B. P. AndreianovC. DonadelloU. RazafisonJ. Y. Rolland and M. D. Rosini, Solutions of the Aw-Rascle-Zhang system with point constraints, Netw. Heterog. Media, 11 (2016), 29-47. doi: 10.3934/nhm.2016.11.29.

[7]

A. Aw and M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938 (electronic). doi: 10.1137/S0036139997332099.

[8]

N. Bellomo and C. Dogbe, On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463. doi: 10.1137/090746677.

[9]

M. Benyahia and M. D. Rosini, Entropy solutions for a traffic model with phase transitions, Nonlinear Anal., 141 (2016), 167-190. doi: 10.1016/j.na.2016.04.011.

[10]

S. BlandinD. WorkP. GoatinB. Piccoli and A. Bayen, A general phase transition model for vehicular traffic, SIAM J. Appl. Math., 71 (2011), 107-127. doi: 10.1137/090754467.

[11]

A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem.

[12]

C. Cancés and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws, SIAM J. Numer. Anal., 50 (2012), 3036-3060. doi: 10.1137/110836912.

[13]

C. Chalons and P. Goatin, Computing phase transitions arising in traffic flow modeling, in Hyperbolic Problems: Theory, Numerics, Applications, Springer, Berlin, 2008,559–566. doi: 10.1007/978-3-540-75712-2_54.

[14]

C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10 (2008), 197-221. doi: 10.4171/IFB/186.

[15]

C. ChalonsP. Goatin and N. Seguin, General constrained conservation laws. Application to pedestrian flow modeling, Netw. Heterog. Media, 8 (2013), 433-463. doi: 10.3934/nhm.2013.8.433.

[16]

R. M. Colombo and M. Garavello, Phase transition model for traffic at a junction, J. Math. Sci. (N. Y.), 196 (2014), 30-36. doi: 10.1007/s10958-013-1631-z.

[17]

R. M. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708–721 (electronic). doi: 10.1137/S0036139901393184.

[18]

R. M. Colombo, Phase transitions in hyperbolic conservation laws, in Progress in Analysis, Vol. I, II (Berlin, 2001), World Sci. Publ., River Edge, NJ, 2003,1279–1287.

[19]

R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014.

[20]

R. M. ColomboP. Goatin and B. Piccoli, Road networks with phase transitions, J. Hyperbolic Differ. Equ., 7 (2010), 85-106. doi: 10.1142/S0219891610002025.

[21]

R. M. ColomboP. Goatin and F. S. Priuli, Global well posedness of traffic flow models with phase transitions, Nonlinear Anal., 66 (2007), 2413-2426. doi: 10.1016/j.na.2006.03.029.

[22]

R. M. ColomboP. Goatin and M. D. Rosini, On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872. doi: 10.1051/m2an/2010105.

[23]

R. M. ColomboF. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound, SIAM J. Appl. Math., 70 (2010), 2652-2666. doi: 10.1137/090752468.

[24]

E. Dal Santo, M. D. Rosini, N. Dymski and M. Benyahia, General phase transition models for vehicular traffic with point constraints on the flow, arXiv preprint, arXiv: 1608.04932.

[25]

M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648. doi: 10.1016/j.jmaa.2011.01.033.

[26]

M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, 2016, URL https://www.math.ntnu.no/conservation/2016/007.pdf.

[27]

M. Garavello, K. Han and B. Piccoli, Models for Vehicular Traffic on Networks, vol. 9 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2016, Conservation laws models.

[28]

M. Garavello and B. Piccoli, Traffic flow on a road network using the Aw-Rascle model, Comm. Partial Differential Equations, 31 (2006), 243-275. doi: 10.1080/03605300500358053.

[29]

M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models.

[30]

M. Garavello and B. Piccoli, Coupling of Lighthill-Whitham-Richards and phase transition models, J. Hyperbolic Differ. Equ., 10 (2013), 577-636. doi: 10.1142/S0219891613500215.

[31]

M. Garavello and B. Piccoli, Coupling of microscopic and phase transition models at boundary, Netw. Heterog. Media, 8 (2013), 649-661. doi: 10.3934/nhm.2013.8.649.

[32]

P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput. Modelling, 44 (2006), 287-303. doi: 10.1016/j.mcm.2006.01.016.

[33]

P. Goatin, Traffic flow models with phase transitions on road networks, Netw. Heterog. Media, 4 (2009), 287-301. doi: 10.3934/nhm.2009.4.287.

[34]

H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, vol. 152 of Applied Mathematical Sciences, 2nd edition, Springer, Heidelberg, 2015. doi: 10.1007/978-3-662-47507-2.

[35]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, in Proceedings of the Royal Society. London. Series A. Mathematical, Physical and Engineering Sciences, 229 (1955), 317–345. doi: 10.1098/rspa.1955.0089.

[36]

R. Mohan and G. Ramadurai, State-of-the art of macroscopic traffic flow modelling, Int. J. Adv. Eng. Sci. Appl. Math., 5 (2013), 158-176. doi: 10.1007/s12572-013-0087-1.

[37]

L. Pan and X. Han, The generalized Riemann problem for the Aw-Rascle model with phase transitions, J. Math. Anal. Appl., 389 (2012), 685-693. doi: 10.1016/j.jmaa.2011.11.081.

[38]

L. Pan and X. Han, The global solution of the interaction problem for the Aw-Rascle model with phase transitions, Math. Methods Appl. Sci., 35 (2012), 1700-1711. doi: 10.1002/mma.2552.

[39]

B. Piccoli and A. Tosin, Vehicular traffic: A review of continuum mathematical models, in Mathematics of complexity and dynamical systems. Vols. 1–3, Springer, New York, 2012, 1748–1770. doi: 10.1007/978-1-4614-1806-1_112.

[40]

P. I. Richards, Shock waves on the highway, Operations Res., 4 (1956), 42-51. doi: 10.1287/opre.4.1.42.

[41]

M. D. Rosini, The initial-boundary value problem and the constraint, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, (2013), 63-91. doi: 10.1007/978-3-319-00155-5_6.

[42]

M. D. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications, Understanding Complex Systems, Springer, Heidelberg, 2013. doi: 10.1007/978-3-319-00155-5.

[43]

H. Zhang, A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological, 36 (2002), 275-290. doi: 10.1016/S0191-2615(00)00050-3.

Figure 1.  Geometrical meaning of the notations used through the paper. In particular, $\Omega_{\rm f} = \Omega_{\rm f}^- \cup \Omega_{\rm f}^+$ and $\Omega_{\rm c}$ are the free-flow and congested domains, respectively; $V_{\rm f}^+$ and $V_{\rm f}^-$ are the maximal and minimal speeds in the free-flow phase, respectively, and $V_{\rm c}$ is the maximal speed in the congested phase
Figure 2.  Geometrical meaning of the cases (T11a) and (T11b). Above $u_\ell'$ and $u_\ell''$ are $u_\ell$ in two different cases
Figure 3.  Geometrical meaning of the cases (T12a) and (T12b). Above $u_\ell'$ and $u_\ell''$ are $u_\ell$ in two different cases
Figure 4.  Geometrical meaning of the cases (T21a), (T21b) and (T22a). Above $u_\ell'$ and $u_\ell''$ are $u_\ell$ in two different cases
Figure 5.  $(\rho_1, v_1) \doteq \mathcal{R}_1^{\rm c}[u_\ell,u_r]$ and $(\rho_2, v_2) \doteq \mathcal{R}_2^{\rm c}[u_\ell,u_r]$ in the case considered in Example 1.
Figure 6.  The invariant domains described in Proposition 6 and Proposition 9
Figure 7.  $u_1 \doteq \mathcal{R}_1^{\rm c}[u_0,u_0]$ and $u_2 \doteq \mathcal{R}_2^{\rm c}[u_0,u_0]$ in the case considered in Example 2. Above $\hat{u}_1,\check{u}_1$ are given by (T11b) and $\hat{u}_2,\check{u}_2$ by (T21b); we let $w_0 = W(u_0)$, $\check{v}_i = V(\check{u}_i)$, $\hat{w}_2 = W(\hat{u}_2)$, $\check{w}_i = W(\check{u}_i)$
Figure 8.  Notations used in Section 5
Figure 9.  The solutions constructed in Subsection 5.1 on the left and in Subsection 5.2 on the right represented in the $(x,t)$-plane. The red thick curves are phase transitions. In particular, those along $x=0$ are stationary undercompressive phase transitions
Figure 10.  Quantitative representation of density, on the left, and velocity, on the right, corresponding to the solutions constructed in Subsection 5.1 and Subsection 5.2. Recall that the two solutions coincide up to the interaction $i_5$
Figure 11.  Quantitative representation of density, on the left, and velocity, on the right, corresponding to the solution constructed in Subsection 5.2
[1]

Stefano Villa, Paola Goatin, Christophe Chalons. Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3921-3952. doi: 10.3934/dcdsb.2017202

[2]

Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks & Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018

[3]

Shimao Fan, Michael Herty, Benjamin Seibold. Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks & Heterogeneous Media, 2014, 9 (2) : 239-268. doi: 10.3934/nhm.2014.9.239

[4]

Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences & Engineering, 2017, 14 (1) : 127-141. doi: 10.3934/mbe.2017009

[5]

João-Paulo Dias, Mário Figueira. On the Riemann problem for some discontinuous systems of conservation laws describing phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (1) : 53-58. doi: 10.3934/cpaa.2004.3.53

[6]

Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks & Heterogeneous Media, 2016, 11 (1) : 29-47. doi: 10.3934/nhm.2016.11.29

[7]

Yanbo Hu, Wancheng Sheng. The Riemann problem of conservation laws in magnetogasdynamics. Communications on Pure & Applied Analysis, 2013, 12 (2) : 755-769. doi: 10.3934/cpaa.2013.12.755

[8]

Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279

[9]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[10]

Mauro Garavello, Francesca Marcellini. The Riemann Problem at a Junction for a Phase Transition Traffic Model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5191-5209. doi: 10.3934/dcds.2017225

[11]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[12]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[13]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial & Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[14]

Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587

[15]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[16]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[17]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[18]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[19]

Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure & Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759

[20]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

2017 Impact Factor: 1.187

Metrics

  • PDF downloads (10)
  • HTML views (19)
  • Cited by (0)

Other articles
by authors

[Back to Top]