\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Coupling conditions for the transition from supersonic to subsonic fluid states

  • * Corresponding author: Michael Herty

    * Corresponding author: Michael Herty 
The first author is supported by the DFG Collaborative Research Centre SFB-TR-154, C03. The second author is supported by NSF RNMS grant No. 1107444, DFG HE5386/13, 14, 15-1 and the DAAD{MIUR project.The third author is supported by the DFG Collaborative Research Center SFB-TR-40, TP A1.
Abstract / Introduction Full Text(HTML) Figure(3) / Table(2) Related Papers Cited by
  • We discuss coupling conditions for the p-system in case of a transition from supersonic states to subsonic states. A single junction with adjacent pipes is considered where on each pipe the gas flow is governed by a general p-system. By extending the notion of demand and supply known from traffic flow analysis we obtain a constructive existence result of solutions compatible with the introduced conditions.

    Mathematics Subject Classification: Primary: 35L60, 35L04; Secondary: 35R02.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Junction of $n+m=|\delta^-|+|\delta^+|$ connected pipes

    Figure 2.  The supply function $\rho {\,\mapsto\,} s(\rho;\bar{U})$ in red for given data $\bar{U}$ indicated by a cross for $\bar{\rho }>\rho^*$ (left) and $\bar{\rho }<\rho^*$ (right). Also shown in blue is the curve $L_2^-.$ The state $U^*$ is indicated by a circle.

    Figure 3.  The demand function $\rho {\,\mapsto\,} d(\rho; \bar{U})$ in red for given data $\bar{U}$. Also shown in blue is the curve $L_1.$

    Table 1.  Random initial states $U_{0,k}$ on incoming pipes $k<0$ and outgoing pipes $k>0.$ The initial difference in the sum of the mass fluxes is given by $\Delta = 9.162e+00.$

    Pipe $k$$(\rho_{0,k},q_{0,k})$$p(\rho_{0,k})$
    -1(5.151e-01, 2.519e+00)2.653e-01
    -2(6.317e-01, 2.794e+00)3.991e-01
    -3(6.642e-01, 3.905e+00)4.412e-01
    1(5.730e-01, -2.648e-01)3.283e-01
    2(7.460e-01, -1.523e-01)5.565e-01
    3(5.931e-01, -1.280e-01)3.518e-01
    4(5.849e-01, 6.020e-01)3.421e-01
     | Show Table
    DownLoad: CSV

    Table 2.  Terminal states $U_{k}(t,0\pm)$ for $k\in\delta^\pm.$ The difference in the sum of the mass fluxes is zero

    Pipe $k$$(\rho_{k},q_{k})$$p(\rho_{k})$
    -1(2.089e+00, 5.101e+00)4.364e+00
    -2(2.089e+00, 4.868e+00)4.364e+00
    -3(2.089e+00, 8.090e+00)4.364e+00
    1(2.089e+00, 3.757e+00)4.364e+00
    2(2.089e+00, 3.357e+00)4.364e+00
    3(2.089e+00, 4.147e+00)4.364e+00
    4(2.089e+00, 6.798e+00)4.364e+00
     | Show Table
    DownLoad: CSV
  • [1] M. K. BandaM. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic).  doi: 10.3934/nhm.2006.1.295.
    [2] M. K. BandaM. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.  doi: 10.3934/nhm.2006.1.41.
    [3] A. Bressan, Hyperbolic Systems of Conservation Laws, The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.
    [4] A. BressanS. CanicM. GaravelloM. Herty and B. Piccoli, Flow on networks: recent results and perspectives, European Mathematical Society-Surveys in Mathematical Sciences, 1 (2014), 47-111.  doi: 10.4171/EMSS/2.
    [5] G.-Q. Chen and D. Wang, The Cauchy problem for the Euler equations for compressible fluids, Handbook of Mathematical Fluid Dynamics, 1 (2002), 421-543.  doi: 10.1016/S1874-5792(02)80012-X.
    [6] G. M. CocliteM. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886 (electronic).  doi: 10.1137/S0036141004402683.
    [7] R. M. ColomboG. GuerraM. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.  doi: 10.1137/080716372.
    [8] R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.  doi: 10.3934/nhm.2006.1.495.
    [9] R. M. Colombo and M. Garavello, On the Cauchy problem for the p-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.  doi: 10.1137/060665841.
    [10] R. M. ColomboM. Herty and V. Sachers, On 2×2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.  doi: 10.1137/070690298.
    [11] A. de Saint-Venant, Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l'introduction des marèes dans leur lit., C.R. Acad. Sci. Paris, 73 (1871), 147-154. 
    [12] M. Garavello and B. Piccoli, Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models.
    [13] E. Godlewski and P. -A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, 118, Springer-Verlag, New York, 1996. doi: 10.1007/978-1-4612-0713-9.
    [14] M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.  doi: 10.1137/05062617X.
    [15] M. Herty and M. Seaïd, Assessment of coupling conditions in water way intersections, Internat. J. Numer. Methods Fluids, 71 (2013), 1438-1460.  doi: 10.1002/fld.3719.
    [16] H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.  doi: 10.1137/S0036141093243289.
    [17] H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic).  doi: 10.1137/S0036141097327033.
    [18] S. Joana, M. Joris and T. Evangelos, Technical and Economical Characteristics of Co2 Transmission Pipeline Infrastructure, Technical report, JRC Scientic and Technical Reports, European Commission.
    [19] J.-P. Lebacque, Les modeles macroscopiques du traffic, Annales des Ponts., 67 (1993), 24-45. 
    [20] F. Murzyn and H. Chanson, Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps, Experiments in Fluids, 45 (2008), 513-521.  doi: 10.1007/s00348-008-0494-4.
    [21] A. Osiadacz, Simulation of transient flow in gas networks, Int. Journal for Numerical Methods in Fluid Dynamics, 4 (1984), 13-23.  doi: 10.1002/fld.1650040103.
    [22] B. Sultanian, Fluid Mechanics: An Intermediate Approach, CRC Press, 2015.
    [23] R. Ugarelli and V. D. Federico, Transition from supercritical to subcritical regime in free surface flow of yield stress fluids Geophys. Res. Lett. , 34 (2007), L21402. doi: 10.1029/2007GL031487.
  • 加载中

Figures(3)

Tables(2)

SHARE

Article Metrics

HTML views(1793) PDF downloads(252) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return