[1]
|
M. K. Banda, M. Herty and A. Klar, Coupling conditions for gas networks governed by the isothermal Euler equations, Netw. Heterog. Media, 1 (2006), 295-314 (electronic).
doi: 10.3934/nhm.2006.1.295.
|
[2]
|
M. K. Banda, M. Herty and A. Klar, Gas flow in pipeline networks, Netw. Heterog. Media, 1 (2006), 41-56.
doi: 10.3934/nhm.2006.1.41.
|
[3]
|
A. Bressan,
Hyperbolic Systems of Conservation Laws, The One-Dimensional Cauchy Problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.
|
[4]
|
A. Bressan, S. Canic, M. Garavello, M. Herty and B. Piccoli, Flow on networks: recent results and perspectives, European Mathematical Society-Surveys in Mathematical Sciences, 1 (2014), 47-111.
doi: 10.4171/EMSS/2.
|
[5]
|
G.-Q. Chen and D. Wang, The Cauchy problem for the Euler equations for compressible fluids, Handbook of Mathematical Fluid Dynamics, 1 (2002), 421-543.
doi: 10.1016/S1874-5792(02)80012-X.
|
[6]
|
G. M. Coclite, M. Garavello and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., 36 (2005), 1862-1886 (electronic).
doi: 10.1137/S0036141004402683.
|
[7]
|
R. M. Colombo, G. Guerra, M. Herty and V. Schleper, Optimal control in networks of pipes and canals, SIAM J. Control Optim., 48 (2009), 2032-2050.
doi: 10.1137/080716372.
|
[8]
|
R. M. Colombo and M. Garavello, A well posed Riemann problem for the p-system at a junction, Netw. Heterog. Media, 1 (2006), 495-511.
doi: 10.3934/nhm.2006.1.495.
|
[9]
|
R. M. Colombo and M. Garavello, On the Cauchy problem for the p-system at a junction, SIAM J. Math. Anal., 39 (2008), 1456-1471.
doi: 10.1137/060665841.
|
[10]
|
R. M. Colombo, M. Herty and V. Sachers, On 2×2 conservation laws at a junction, SIAM J. Math. Anal., 40 (2008), 605-622.
doi: 10.1137/070690298.
|
[11]
|
A. de Saint-Venant, Thèorie du mouvement non-permanent des eaux, avec application aux crues des rivière at à l'introduction des marèes dans leur lit., C.R. Acad. Sci. Paris, 73 (1871), 147-154.
|
[12]
|
M. Garavello and B. Piccoli,
Traffic Flow on Networks, vol. 1 of AIMS Series on Applied Mathematics, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006, Conservation laws models.
|
[13]
|
E. Godlewski and P. -A. Raviart,
Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, 118, Springer-Verlag, New York, 1996.
doi: 10.1007/978-1-4612-0713-9.
|
[14]
|
M. Herty and M. Rascle, Coupling conditions for a class of second-order models for traffic flow, SIAM J. Math. Anal., 38 (2006), 595-616.
doi: 10.1137/05062617X.
|
[15]
|
M. Herty and M. Seaïd, Assessment of coupling conditions in water way intersections, Internat. J. Numer. Methods Fluids, 71 (2013), 1438-1460.
doi: 10.1002/fld.3719.
|
[16]
|
H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidirectional roads, SIAM J. Math. Anal., 26 (1995), 999-1017.
doi: 10.1137/S0036141093243289.
|
[17]
|
H. Holden and N. H. Risebro, Riemann problems with a kink, SIAM J. Math. Anal., 30 (1999), 497-515 (electronic).
doi: 10.1137/S0036141097327033.
|
[18]
|
S. Joana, M. Joris and T. Evangelos,
Technical and Economical Characteristics of Co2 Transmission Pipeline Infrastructure, Technical report, JRC Scientic and Technical Reports, European Commission.
|
[19]
|
J.-P. Lebacque, Les modeles macroscopiques du traffic, Annales des Ponts., 67 (1993), 24-45.
|
[20]
|
F. Murzyn and H. Chanson, Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps, Experiments in Fluids, 45 (2008), 513-521.
doi: 10.1007/s00348-008-0494-4.
|
[21]
|
A. Osiadacz, Simulation of transient flow in gas networks, Int. Journal for Numerical Methods in Fluid Dynamics, 4 (1984), 13-23.
doi: 10.1002/fld.1650040103.
|
[22]
|
B. Sultanian,
Fluid Mechanics: An Intermediate Approach, CRC Press, 2015.
|
[23]
|
R. Ugarelli and V. D. Federico, Transition from supercritical to subcritical regime in free surface flow of yield stress fluids Geophys. Res. Lett. , 34 (2007), L21402.
doi: 10.1029/2007GL031487.
|