In this paper we consider macroscopic nonlinear moment models for the approximation of kinetic chemotaxis equations on a network. Coupling conditions at the nodes of the network for these models are derived from the coupling conditions of kinetic equations. The results of the different models are compared and relations to a Keller-Segel model on networks are discussed. For a numerical approximation of the governing equations an asymptotic well-balanced schemes is extended to directed graphs. Kinetic and macroscopic equations are investigated numerically and their solutions are compared for tripod and more general networks.
Citation: |
[1] | N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, Multiscale biological tissue models and flux-limited chemotaxis for multicellular growing systems, Math. Models Methods Appl. Sci, 20 (2010), 1179-1207. doi: 10.1142/S0218202510004568. |
[2] | N. Bellomo, A. Bellouquid, J. Nieto and J. Soler, On the asymptotic theory from microscopic to macroscopic growing tissue models: An overview with perspectives Mathematical Models and Methods in Applied Sciences, 22 (2012), 1130001, 37pp. doi: 10.1142/S0218202512005885. |
[3] | N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. |
[4] | C. Berton, P. Charrier and B. Dubroca, An asymptotic preserving relaxation scheme for a moment model of radiative transfer, C.R. Acad. Sci. Paris, Ser. I, 344 (2007), 467-472. doi: 10.1016/j.crma.2007.02.004. |
[5] | R. Borsche, S. Göttlich, A. Klar and P. Schillen, The scalar Keller-Segel model on networks, Math. Models Methods Appl. Sci., 24 (2014), 221-247. doi: 10.1142/S0218202513400071. |
[6] | R. Borsche, J. Kall, A. Klar and T. N. H. Pham, Kinetic and related macroscopic models for chemotaxis on networks, Mathematical Models and Methods in Applied Sciences, 26 (2016), 1219-1242. doi: 10.1142/S0218202516500299. |
[7] | N. Bournaveas and V. Calvez, The one-dimensional Keller-Segel model with fractional diffusion of cells, Nonlinearity, 23 (2010), 923-935. doi: 10.1088/0951-7715/23/4/009. |
[8] | G. Bretti, R. Natalini and M. Ribot, A hyperbolic model of chemotaxis on a network: A numerical study, ESAIM: M2AN, 48 (2014), 231-258. doi: 10.1051/m2an/2013098. |
[9] | V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: Energy estimates preventing blow-up, Journal de Mathematiques Pures et Appliquees, 86 (2006), 155-175. doi: 10.1016/j.matpur.2006.04.002. |
[10] | F. Camilli and L. Corrias, Parabolic models for chemotaxis on weighted networks, to appear in Journal de Mathematiques Pures et Appliquees, 2017. |
[11] | F. Chalub, P. Markowich, B. Perthame and C. Schmeiser, Kinetic models for chemotaxis and their drift-diffusion limits, Monatsh. Math., 142 (2004), 123-141. doi: 10.1007/s00605-004-0234-7. |
[12] | P. H. Chavanis, Jeans type instability for a chemotactic model of cellular aggregation, Eur. Phys. J. B, 52 (2006), 433-443. doi: 10.1140/epjb/e2006-00310-y. |
[13] | A. Chertock, A. Kurganov, X. Wang and Y. Wu, On a chemotaxis model with saturated chemotactic flux, Kinet. Relat. Models, 5 (2012), 51-95. doi: 10.3934/krm.2012.5.51. |
[14] | S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), 217-237. doi: 10.1016/0025-5564(81)90055-9. |
[15] | S. Cordier and C. Buet, Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models, C.R. Acad. Sci. Paris, Ser. I, 338 (2004), 951-956. doi: 10.1016/j.crma.2004.04.006. |
[16] | R. E. Curto and L. A. Fialkow, Recursiveness, positivity, and truncated moment problems, Houston Journal of Mathematics, 17 (1991), 603-635. |
[17] | B. Dubroca and A. Klar, Half-moment closure for radiative transfer equations, Journal of Computational Physics, 180 (2002), 584-596. doi: 10.1006/jcph.2002.7106. |
[18] | L. Fermo and A. Tosin, A fully-discrete-state kinetic theory approach to traffic flow on road networks, Math. Models Methods Appl. Sci., 25 (2015), 423-461. doi: 10.1142/S0218202515400023. |
[19] | F. Filbet, P. Laurençot and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J Math Biol., 50 (2005), 189-207. doi: 10.1007/s00285-004-0286-2. |
[20] | L. Gosse, Localization effects and measure source terms in numerical schemes for balance laws, Mathematics of Computation, 71 (2002), 553-582. doi: 10.1090/S0025-5718-01-01354-0. |
[21] | L. Gosse, Asymptotic-preserving and well-balanced schemes for the 1d cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes, Journal of Mathematical Analysis and Applications, 388 (2012), 964-983. doi: 10.1016/j.jmaa.2011.10.039. |
[22] | L. Gosse and G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations, Comptes Rendus Mathematique, 334 (2002), 337-342. doi: 10.1016/S1631-073X(02)02257-4. |
[23] | T. Goudon and C. Lin, Analysis of the m1 model: Well-posedness and diffusion asymptotics, Journal of Mathematical Analysis and Applications, 402 (2013), 579-593. doi: 10.1016/j.jmaa.2013.01.042. |
[24] | J. M. Greenberg and A. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM Journal on Numerical Analysis, 33 (1996), 1-16. doi: 10.1137/0733001. |
[25] | F. R. Guarguaglini and R. Natalini, Global smooth solutions for a hyperbolic chemotaxis model on a network, SIAM J. Math. Anal., 47 (2015), 4652-4671. doi: 10.1137/140997099. |
[26] | M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Ⅳ. Ser., 24 (1997), 633-683. |
[27] | M. Herty and S. Moutari, A macro-kinetic hybrid model for traffic flow on road networks, Comput. Methods Appl. Math., 9 (2009), 238-252. doi: 10.2478/cmam-2009-0015. |
[28] | T. Hillen, Hyperbolic models for chemosensitive movement, Math. Models Methods Appl. Sci., 12 (2002), 1007-1034. doi: 10.1142/S0218202502002008. |
[29] | T. Hillen and K. Painter, A user's guide to pde models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. |
[30] | S. Jin, L. Pareschi and G. Toscani, Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations, SIAM J. Numer. Anal., 35 (1998), 2405-2439 (electronic). doi: 10.1137/S0036142997315962. |
[31] | S. Jin and Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics, 48 (1995), 235-276. doi: 10.1002/cpa.3160480303. |
[32] | E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5. |
[33] | E. F. Keller and L. A. Segel, Model for chemotaxis, Journal of Theoretical Biology, 30 (1971), 225-234. doi: 10.1016/0022-5193(71)90050-6. |
[34] | D. S. Kershaw, Flux limiting nature's own way: A new method for numerical solution of the transport equation, Lawrence Livermore Laboratory, UCRL 78378. |
[35] | C. D. Levermore, Relating eddington factors to flux limiters, Journal of Quantitative Spectroscopy and Radiative Transfer, 31 (1984), 149-160. doi: 10.1016/0022-4073(84)90112-2. |
[36] | M. Rascle and C. Ziti, Finite time blow-up in some models of chemotaxis, J. Math. Biol., 33 (1995), 388-414. doi: 10.1007/BF00176379. |
[37] | F. Schneider, G. Alldredge, M. Frank and A. Klar, Higher order mixed-moment approximations for the Fokker-Planck equation in one space dimension, SIAM Journal on Applied Mathematics, 74 (2014), 1087-1114. doi: 10.1137/130934210. |