December 2017, 12(4): 683-705. doi: 10.3934/nhm.2017028

Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces

1. 

Department of Mathematics, University of Maryland, College Park, MD 20742, USA

2. 

Current address: Foundation for Research and Technology Hellas, Institute of Applied and Computational Mathematics, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Greece

Received  July 2016 Revised  February 2017 Published  October 2017

In this paper we study the hydrodynamic (small mass approximation) limit of a Fokker-Planck equation. This equation arises in the kinetic description of the evolution of a particle system immersed in a viscous Stokes flow. We discuss two different methods of hydrodynamic convergence. The first method works with initial data in a weighted L2 space and uses weak convergence and the extraction of convergent subsequences. The second uses entropic initial data and gives an L1 convergence to the solution of the limit problem via the study of the relative entropy.

Citation: Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028
References:
[1]

C. BardosF. GolseB. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460. doi: 10.1016/0022-1236(88)90096-1.

[2] B. BirdR. ArmstrongC. Curtiss and O. Hassager, Dynamics of Polymeric Liquids: Kinetic Theory, vol 2, 2nd edition, John Wiley & Sons, 1994.
[3]

B. CichockiB. U. FelderhofK. HinsenE. Wajnryb and J. Blawzdziewicz, Friction and mobility of many spheres in Stokes flow, J. Chem. Phys., 100 (1994), 3780-3790. doi: 10.1063/1.466366.

[4]

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299-318.

[5]

P. DegondT. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.

[6]

P. Degond and H. Liu, Kinetic models for polymers with inertial effects, Netw. Heterog. Media, 4 (2009), 625-647. doi: 10.3934/nhm.2009.4.625.

[7] M. Doi, Introduction to Polymer Physics, Oxford University Press, 1996.
[8] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986.
[9]

J. DolbeaultP. A. MarkowichD. Oelz and C. Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal., 186 (2007), 133-158. doi: 10.1007/s00205-007-0049-5.

[10]

A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 322 (1905), 549-560. doi: 10.1002/andp.19053220806.

[11]

M. Freidlin, Some remarks on the Smoluchowski-Kramers approximation, J. Stat. Phys., 117 (2004), 617-634. doi: 10.1007/s10955-004-2273-9.

[12]

N. Ghani and N. Masmoudi, Diffusion limit of The Vlassov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479. doi: 10.4310/CMS.2010.v8.n2.a9.

[13]

F. Golse, C. D. Levermore and L. Saint-Raymond, La Méthode de L'entropie Relative Pour les Limites Hydrodynamiques de Modéles Cinétiques Séminaire Equations aux Derivées Partielles, Exp. No. XIX, Ecole Polytechnique, 2000.

[14]

F. Golse and F. Poupaud, Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac, Asympot. Anal., 6 (1992), 135-160.

[15]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15 (2005), 737-752. doi: 10.1142/S021820250500056X.

[16]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅰ: Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515. doi: 10.1512/iumj.2004.53.2508.

[17]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅱ: Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536. doi: 10.1512/iumj.2004.53.2509.

[18]

P. -E. Jabin, private communication.

[19]

P.-E. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004), 415-432. doi: 10.1007/s00220-004-1126-3.

[20]

P. -E. Jabin and B. Perthame, Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in Modeling in Applied Sciences, a Kinetic Theory Approach (eds. N. Bellomo and M. Pulvirenti), Birkhäuser, (2000), 111-147.

[21] G. Jannick and J. des Cloizeaux, Polymers in Solution: Their Modelling and Structure, Oxford University Press, 1990.
[22]

D. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech., 139 (1984), 261-290. doi: 10.1017/S0022112084000355.

[23] G. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, 1991.
[24]

J. G. Kirkwood, John Gamble Kirkwood Collected Works: Macromolecules, vol 3, Documents on modern physics, Gordon and Breach, 1967.

[25]

S. Kullback, A lower bound for discrimination information in terms of variation, IEEE Trans. Inform. Theory, 13 (1967), 126-127.

[26]

C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially $W^{1, 1}$ velocities and applications, Ann. Mat. Pura Appl., 183 (2004), 97-130. doi: 10.1007/s10231-003-0082-4.

[27]

C. Le Bris and P.-L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33 (2008), 1272-1317. doi: 10.1080/03605300801970952.

[28] M. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.
[29]

F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers, Asympot. Anal., 4 (1991), 293-317.

[30]

F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects, Math. Methods Appl. Sci., 14 (1991), 301-318. doi: 10.1002/mma.1670140503.

[31]

M. Reichert, Hydrodynamic Interactions in Colloidal and Biological Systems, Ph. D thesis, University Konstanz, 2006.

[32]

H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, in Springer Series in Synergetics, 18 2nd edition, Berlin, 1989. doi: 10.1007/978-3-642-61544-3.

[33]

J. Rotne and S. Prager, Variational treatment of hydrodynamic iteractions in polymers, J. Chem. Phys., 50 (1969), 4831-4837.

[34]

S. Varadhan, Entropy methods in hydrodynamic scaling, Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1 (1995), 196-208

[35]

M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys., 326 (1906), 756-780. doi: 10.1002/andp.19063261405.

[36]

H. Yamakawa, Transport properties of polymer chains in dilute solutions: Hydrodynamic interactions, J. Chem. Phys., 53 (1970), 436-443. doi: 10.1063/1.1673799.

[37]

H. T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys., 22 (1991), 63-80. doi: 10.1007/BF00400379.

show all references

References:
[1]

C. BardosF. GolseB. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460. doi: 10.1016/0022-1236(88)90096-1.

[2] B. BirdR. ArmstrongC. Curtiss and O. Hassager, Dynamics of Polymeric Liquids: Kinetic Theory, vol 2, 2nd edition, John Wiley & Sons, 1994.
[3]

B. CichockiB. U. FelderhofK. HinsenE. Wajnryb and J. Blawzdziewicz, Friction and mobility of many spheres in Stokes flow, J. Chem. Phys., 100 (1994), 3780-3790. doi: 10.1063/1.466366.

[4]

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung., 2 (1967), 299-318.

[5]

P. DegondT. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro-reversible processes, Indiana Univ. Math. J., 49 (2000), 1175-1198.

[6]

P. Degond and H. Liu, Kinetic models for polymers with inertial effects, Netw. Heterog. Media, 4 (2009), 625-647. doi: 10.3934/nhm.2009.4.625.

[7] M. Doi, Introduction to Polymer Physics, Oxford University Press, 1996.
[8] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, New York, 1986.
[9]

J. DolbeaultP. A. MarkowichD. Oelz and C. Schmeiser, Non linear diffusions as limit of kinetic equations with relaxation collision kernels, Arch. Ration. Mech. Anal., 186 (2007), 133-158. doi: 10.1007/s00205-007-0049-5.

[10]

A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Ann. Phys., 322 (1905), 549-560. doi: 10.1002/andp.19053220806.

[11]

M. Freidlin, Some remarks on the Smoluchowski-Kramers approximation, J. Stat. Phys., 117 (2004), 617-634. doi: 10.1007/s10955-004-2273-9.

[12]

N. Ghani and N. Masmoudi, Diffusion limit of The Vlassov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479. doi: 10.4310/CMS.2010.v8.n2.a9.

[13]

F. Golse, C. D. Levermore and L. Saint-Raymond, La Méthode de L'entropie Relative Pour les Limites Hydrodynamiques de Modéles Cinétiques Séminaire Equations aux Derivées Partielles, Exp. No. XIX, Ecole Polytechnique, 2000.

[14]

F. Golse and F. Poupaud, Limite fluide des équations de Boltzmann des semi-conducteurs pour une statistique de Fermi-Dirac, Asympot. Anal., 6 (1992), 135-160.

[15]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15 (2005), 737-752. doi: 10.1142/S021820250500056X.

[16]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅰ: Light particles regime, Indiana Univ. Math. J., 53 (2004), 1495-1515. doi: 10.1512/iumj.2004.53.2508.

[17]

T. GoudonP.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes equation. Part Ⅱ: Fine particles regime, Indiana Univ. Math. J., 53 (2004), 1517-1536. doi: 10.1512/iumj.2004.53.2509.

[18]

P. -E. Jabin, private communication.

[19]

P.-E. Jabin and F. Otto, Identification of the dilute regime in particle sedimentation, Comm. Math. Phys., 250 (2004), 415-432. doi: 10.1007/s00220-004-1126-3.

[20]

P. -E. Jabin and B. Perthame, Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid, in Modeling in Applied Sciences, a Kinetic Theory Approach (eds. N. Bellomo and M. Pulvirenti), Birkhäuser, (2000), 111-147.

[21] G. Jannick and J. des Cloizeaux, Polymers in Solution: Their Modelling and Structure, Oxford University Press, 1990.
[22]

D. Jeffrey and Y. Onishi, Calculation of the resistance and mobility functions for two unequal rigid spheres in low-Reynolds-number flow, J. Fluid Mech., 139 (1984), 261-290. doi: 10.1017/S0022112084000355.

[23] G. Kim and S. J. Karrila, Microhydrodynamics: Principles and Selected Applications, Butterworth-Heinemann, Boston, 1991.
[24]

J. G. Kirkwood, John Gamble Kirkwood Collected Works: Macromolecules, vol 3, Documents on modern physics, Gordon and Breach, 1967.

[25]

S. Kullback, A lower bound for discrimination information in terms of variation, IEEE Trans. Inform. Theory, 13 (1967), 126-127.

[26]

C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with partially $W^{1, 1}$ velocities and applications, Ann. Mat. Pura Appl., 183 (2004), 97-130. doi: 10.1007/s10231-003-0082-4.

[27]

C. Le Bris and P.-L. Lions, Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Comm. Partial Differential Equations, 33 (2008), 1272-1317. doi: 10.1080/03605300801970952.

[28] M. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco, 1964.
[29]

F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: analysis of boundary layers, Asympot. Anal., 4 (1991), 293-317.

[30]

F. Poupaud and C. Schmeiser, Charge transport in semiconductors with degeneracy effects, Math. Methods Appl. Sci., 14 (1991), 301-318. doi: 10.1002/mma.1670140503.

[31]

M. Reichert, Hydrodynamic Interactions in Colloidal and Biological Systems, Ph. D thesis, University Konstanz, 2006.

[32]

H. Risken, The Fokker-Planck Equation. Methods of Solution and Applications, in Springer Series in Synergetics, 18 2nd edition, Berlin, 1989. doi: 10.1007/978-3-642-61544-3.

[33]

J. Rotne and S. Prager, Variational treatment of hydrodynamic iteractions in polymers, J. Chem. Phys., 50 (1969), 4831-4837.

[34]

S. Varadhan, Entropy methods in hydrodynamic scaling, Proceedings of the International Congress of Mathematicians, Birkhäuser, Basel, 1 (1995), 196-208

[35]

M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen, Ann. Phys., 326 (1906), 756-780. doi: 10.1002/andp.19063261405.

[36]

H. Yamakawa, Transport properties of polymer chains in dilute solutions: Hydrodynamic interactions, J. Chem. Phys., 53 (1970), 436-443. doi: 10.1063/1.1673799.

[37]

H. T. Yau, Relative entropy and hydrodynamics of Ginzburg-Landau models, Lett. Math. Phys., 22 (1991), 63-80. doi: 10.1007/BF00400379.

[1]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[2]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[3]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[4]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[5]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[6]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[7]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[8]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[9]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[10]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[11]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[12]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[13]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[14]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[15]

Renjun Duan, Shuangqian Liu. Cauchy problem on the Vlasov-Fokker-Planck equation coupled with the compressible Euler equations through the friction force. Kinetic & Related Models, 2013, 6 (4) : 687-700. doi: 10.3934/krm.2013.6.687

[16]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

[17]

Steve Levandosky, Yue Liu. Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 793-806. doi: 10.3934/dcdsb.2007.7.793

[18]

Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519

[19]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[20]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

2016 Impact Factor: 1.2

Article outline

[Back to Top]