
-
Previous Article
Stochastic homogenization of maximal monotone relations and applications
- NHM Home
- This Issue
- Next Article
Derivation of a rod theory from lattice systems with interactions beyond nearest neighbours
1. | Università di Cassino e del Lazio meridionale, Dipartimento di Ingegneria Elettrica e dell’Informazione, via Di Biasio 43, Cassino (FR), 03043, Italy |
2. | Università di Napoli Federico Ⅱ, Dipartimento di Matematica e Applicazioni, via Cintia, Monte S. Angelo, Napoli, 80126, Italy |
3. | University of Sussex, Department of Mathematics, Pevensey 2 Building, Falmer Campus, Brighton, BN1 9QH, United Kingdom |
We study continuum limits of discrete models for (possibly heterogeneous) nanowires. The lattice energy includes at least nearest and next-to-nearest neighbour interactions: the latter have the role of penalising changes of orientation. In the heterogeneous case, we obtain an estimate on the minimal energy spent to match different equilibria. This gives insight into the nucleation of dislocations in epitaxially grown heterostructured nanowires.
References:
[1] |
R. Alicandro, A. Braides and M. Cicalese,
Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. Partial Differential Equations, 33 (2008), 267-297.
doi: 10.1007/s00526-008-0159-4. |
[2] |
R. Alicandro, G. Lazzaroni and M. Palombaro, On the effect of interactions beyond nearest neighbours on non-convex lattice systems,
Calc. Var. Partial Differential Equations, 56 (2017), Art. 42, 19 pp. |
[3] |
L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[4] |
A. Braides,
$Γ$
-convergence for Beginners, Oxford University Press, Oxford, 2002. |
[5] |
A. Braides and M. Cicalese,
Surface energies in nonconvex discrete systems, Math. Models Methods Appl. Sci., 17 (2007), 985-1037.
doi: 10.1142/S0218202507002182. |
[6] |
A. Braides and M. Solci,
Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case, Math. Mech. Solids, 21 (2016), 915-930.
doi: 10.1177/1081286514544780. |
[7] |
M. Charlotte and L. Truskinovsky,
Linear elastic chain with a hyper-pre-stress, J. Mech. Phys. Solids, 50 (2002), 217-251.
doi: 10.1016/S0022-5096(01)00054-0. |
[8] |
G. Dal Maso,
An Introduction to $Γ$
-convergence, Birkhäuser, Boston, 1993. |
[9] |
E. Ertekin, P. A. Greaney, D. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures,
J. Appl. Phys., 97 (2005), 114325.
doi: 10.1063/1.1903106. |
[10] |
S. Fanzon, M. Palombaro and M. Ponsiglione,
A variational model for dislocations at semi-coherent interfaces, J. Nonlinear Sci., 27 (2017), 1435-1461.
doi: 10.1007/s00332-017-9366-5. |
[11] |
I. Fonseca, N. Fusco, G. Leoni and M. Morini, A model for dislocations in epitaxially strained elastic films, J. Math. Pures Appl., to appear (2018). Google Scholar |
[12] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[13] |
K. L. Kavanagh, Misfit dislocations in nanowire heterostructures,
Semicond. Sci. Technol., 25 (2010), 024006.
doi: 10.1088/0268-1242/25/2/024006. |
[14] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper,
A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.
doi: 10.4310/CMS.2015.v13.n5.a3. |
[15] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper,
Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 119-139.
|
[16] |
M. G. Mora and S. Müller,
Derivation of a rod theory for multiphase materials, Calc. Var. Partial Differential Equations, 28 (2007), 161-178.
|
[17] |
S. Müller and M. Palombaro,
Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.
doi: 10.1007/s00526-012-0552-x. |
[18] |
B. Schmidt,
On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190 (2008), 1-55.
doi: 10.1007/s00205-008-0138-0. |
[19] |
V. Schmidt, J. V. Wittemann and U. Gösele,
Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388.
doi: 10.1021/cr900141g. |
show all references
References:
[1] |
R. Alicandro, A. Braides and M. Cicalese,
Continuum limits of discrete thin films with superlinear growth densities, Calc. Var. Partial Differential Equations, 33 (2008), 267-297.
doi: 10.1007/s00526-008-0159-4. |
[2] |
R. Alicandro, G. Lazzaroni and M. Palombaro, On the effect of interactions beyond nearest neighbours on non-convex lattice systems,
Calc. Var. Partial Differential Equations, 56 (2017), Art. 42, 19 pp. |
[3] |
L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. |
[4] |
A. Braides,
$Γ$
-convergence for Beginners, Oxford University Press, Oxford, 2002. |
[5] |
A. Braides and M. Cicalese,
Surface energies in nonconvex discrete systems, Math. Models Methods Appl. Sci., 17 (2007), 985-1037.
doi: 10.1142/S0218202507002182. |
[6] |
A. Braides and M. Solci,
Asymptotic analysis of Lennard-Jones systems beyond the nearest-neighbour setting: A one-dimensional prototypical case, Math. Mech. Solids, 21 (2016), 915-930.
doi: 10.1177/1081286514544780. |
[7] |
M. Charlotte and L. Truskinovsky,
Linear elastic chain with a hyper-pre-stress, J. Mech. Phys. Solids, 50 (2002), 217-251.
doi: 10.1016/S0022-5096(01)00054-0. |
[8] |
G. Dal Maso,
An Introduction to $Γ$
-convergence, Birkhäuser, Boston, 1993. |
[9] |
E. Ertekin, P. A. Greaney, D. C. Chrzan and T. D. Sands, Equilibrium limits of coherency in strained nanowire heterostructures,
J. Appl. Phys., 97 (2005), 114325.
doi: 10.1063/1.1903106. |
[10] |
S. Fanzon, M. Palombaro and M. Ponsiglione,
A variational model for dislocations at semi-coherent interfaces, J. Nonlinear Sci., 27 (2017), 1435-1461.
doi: 10.1007/s00332-017-9366-5. |
[11] |
I. Fonseca, N. Fusco, G. Leoni and M. Morini, A model for dislocations in epitaxially strained elastic films, J. Math. Pures Appl., to appear (2018). Google Scholar |
[12] |
G. Friesecke, R. D. James and S. Müller,
A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math., 55 (2002), 1461-1506.
doi: 10.1002/cpa.10048. |
[13] |
K. L. Kavanagh, Misfit dislocations in nanowire heterostructures,
Semicond. Sci. Technol., 25 (2010), 024006.
doi: 10.1088/0268-1242/25/2/024006. |
[14] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper,
A discrete to continuum analysis of dislocations in nanowire heterostructures, Commun. Math. Sci., 13 (2015), 1105-1133.
doi: 10.4310/CMS.2015.v13.n5.a3. |
[15] |
G. Lazzaroni, M. Palombaro and A. Schlömerkemper,
Rigidity of three-dimensional lattices and dimension reduction in heterogeneous nanowires, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 119-139.
|
[16] |
M. G. Mora and S. Müller,
Derivation of a rod theory for multiphase materials, Calc. Var. Partial Differential Equations, 28 (2007), 161-178.
|
[17] |
S. Müller and M. Palombaro,
Derivation of a rod theory for biphase materials with dislocations at the interface, Calc. Var. Partial Differential Equations, 48 (2013), 315-335.
doi: 10.1007/s00526-012-0552-x. |
[18] |
B. Schmidt,
On the passage from atomic to continuum theory for thin films, Arch. Ration. Mech. Anal., 190 (2008), 1-55.
doi: 10.1007/s00205-008-0138-0. |
[19] |
V. Schmidt, J. V. Wittemann and U. Gösele,
Growth, thermodynamics, and electrical properties of silicon nanowires, Chem. Rev., 110 (2010), 361-388.
doi: 10.1021/cr900141g. |



[1] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[2] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020460 |
[3] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[4] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[5] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[6] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[7] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[8] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[9] |
George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 |
[10] |
Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1 |
[11] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[12] |
Lisa Hernandez Lucas. Properties of sets of Subspaces with Constant Intersection Dimension. Advances in Mathematics of Communications, 2021, 15 (1) : 191-206. doi: 10.3934/amc.2020052 |
[13] |
Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117 |
[14] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[15] |
Qian Liu, Shuang Liu, King-Yeung Lam. Asymptotic spreading of interacting species with multiple fronts Ⅰ: A geometric optics approach. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3683-3714. doi: 10.3934/dcds.2020050 |
[16] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[17] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[18] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[19] |
Yueh-Cheng Kuo, Huan-Chang Cheng, Jhih-You Syu, Shih-Feng Shieh. On the nearest stable $ 2\times 2 $ matrix, dedicated to Prof. Sze-Bi Hsu in appreciation of his inspiring ideas. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020358 |
[20] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
2019 Impact Factor: 1.053
Tools
Metrics
Other articles
by authors
[Back to Top]