[1]
|
T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour growth in inhomogeneous environment, Journal of Theoretical Biology, 225 (2003), 257-274.
doi: 10.1016/S0022-5193(03)00244-3.
|
[2]
|
A. Beros, M. Chyba, A. Fronville and F. Mercier, A morphogenetic cellular automaton, in 2018 Annual American Control Conference (ACC), IEEE, 2018, 1987–1992.
doi: 10.23919/ACC.2018.8431498.
|
[3]
|
A. B. Bishop, Introduction to Discrete Linear Controls: Theory and Application, Elsevier, 2014.
|
[4]
|
H. H. Chen and G. W. Brodland, Cell-level finite element studies of viscous cells in planar aggregates, Journal of Biomechanical Engineering, 122 (2000), 394-401.
doi: 10.1115/1.1286563.
|
[5]
|
V. Douet, A. Kerever, E. Arikawa-Hirasawa and F. Mercier, Fractone-heparan sulphates mediate fgf-2 stimulation of cell proliferation in the adult subventricular zone, Cell Proliferation, 46 (2013), 137-145.
doi: 10.1111/cpr.12023.
|
[6]
|
S. El Yacoubi and P. Jacewicz, Cellular automata and controllability problem, in CD-Rom Proceeding of the 14th Int. Symp. on Mathematical Theory of Networks and Systems, june, 2000, 19–23.
|
[7]
|
S. El Yacoubi, P. Jacewicz and N. Ammor, Analyse et contrôle par automates cellulaires, Annals of the University of Craiova-Mathematics and Computer Science Series, 30 (2003), 210-221.
|
[8]
|
A. Kerever, J. Schnack, D. Vellinga, N. Ichikawa, C. Moon, E. Arikawa-Hirasawa, J. T. Efird and F. Mercier, Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu, Stem Cells, 25 (2007), 2146-2157.
doi: 10.1634/stemcells.2007-0082.
|
[9]
|
M. Mamei, A. Roli and F. Zambonelli, Emergence and control of macro-spatial structures in perturbed cellular automata, and implications for pervasive computing systems, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35 (2005), 337-348.
doi: 10.1109/TSMCA.2005.846379.
|
[10]
|
F. Mercier, Fractones: Extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease, Cellular and Molecular Life Sciences, 73 (2016), 4661-4674.
doi: 10.1007/s00018-016-2314-y.
|
[11]
|
F. Mercier and V. Douet, Bone morphogenetic protein-4 inhibits adult neurogenesis and is regulated by fractone-associated heparan sulfates in the subventricular zone, Journal of Chemical Neuroanatomy, 57 (2014), 54-61.
doi: 10.1016/j.jchemneu.2014.03.005.
|
[12]
|
F. Mercier, J. T. Kitasako and G. I. Hatton, Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network, Journal of Comparative Neurology, 451 (2002), 170-188.
doi: 10.1002/cne.10342.
|
[13]
|
N. J. Popławski, M. Swat, J. S. Gens and J. A. Glazier, Adhesion between cells, diffusion of growth factors, and elasticity of the aer produce the paddle shape of the chick limb, Physica A: Statistical Mechanics and its Applications, 373 (2007), 521-532.
|
[14]
|
D. Walker, S. Wood, J. Southgate, M. Holcombe and R. Smallwood, An integrated agent-mathematical model of the effect of intercellular signalling via the epidermal growth factor receptor on cell proliferation, Journal of Theoretical Biology, 242 (2006), 774-789.
doi: 10.1016/j.jtbi.2006.04.020.
|