June  2019, 14(2): 289-316. doi: 10.3934/nhm.2019012

Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions

1. 

Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, P. O. Box 1160, 41080-Sevilla, Spain

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, 41012-Sevilla, Spain

* Corresponding author: Francisco Javier Suárez-Grau

Received  April 2018 Revised  September 2018 Published  April 2019

Fund Project: María Anguiano is supported by Junta de Andalucía (Spain), Proyecto de Excelencia P12-FQM-2466. Francisco Javier Suárez-Grau is supported by Ministerio de Economía y Competitividad (Spain), Proyecto Excelencia MTM2014-53309-P

We consider the Stokes system in a thin porous medium $ \Omega_\varepsilon $ of thickness $ \varepsilon $ which is perforated by periodically distributed solid cylinders of size $ \varepsilon $. On the boundary of the cylinders we prescribe non-homogeneous slip boundary conditions depending on a parameter $ \gamma $. The aim is to give the asymptotic behavior of the velocity and the pressure of the fluid as $ \varepsilon $ goes to zero. Using an adaptation of the unfolding method, we give, following the values of $ \gamma $, different limit systems.

Citation: María Anguiano, Francisco Javier Suárez-Grau. Newtonian fluid flow in a thin porous medium with non-homogeneous slip boundary conditions. Networks & Heterogeneous Media, 2019, 14 (2) : 289-316. doi: 10.3934/nhm.2019012
References:
[1]

J. N. L. Albert and T. H. Epps, Self-assembly of block copolymer thin films, Materials Today, 13 (2010), 24-33. doi: 10.1016/S1369-7021(10)70106-1. Google Scholar

[2]

G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 44 (1989), 605-642. doi: 10.1002/cpa.3160440602. Google Scholar

[3]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[4]

M. Anguiano and F. J. Suárez-Grau, Homogenization of an incompressible non-Newtonian flow through a thin porous medium, Z. Angew. Math. Phys., 68 (2017), Art. 45, 25 pp. doi: 10.1007/s00033-017-0790-z. Google Scholar

[5]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836. doi: 10.1137/0521046. Google Scholar

[6]

A. BourgeatS. Luckhaus and A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math.Anal., 27 (1996), 1520-1543. doi: 10.1137/S0036141094276457. Google Scholar

[7]

A. Capatina and H. Ene, Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method, Euro. J. of Applied Mathematics, 22 (2011), 333-345. doi: 10.1017/S0956792511000088. Google Scholar

[8]

D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7. Google Scholar

[9]

D. Cioranescu and P. Donato, Homogénéisation du problème du Neumann non homogène dans des ouverts perforés, Asymptotic Analysis, 1 (1988), 115-138. Google Scholar

[10]

D. Cioranescu and P. Donato, Exact internal controllability in perforated domains, J. Math. Pures Appl., 68 (1989), 185-213. Google Scholar

[11]

D. Cioranescu and J. Saint Jean Paulin, Truss structures: Fourier conditions and eigenvalue problems, in Boundary Control and Boundary Variation (Ed. J.P. Zolezio), Springer-Verlag, 178 (1992), 125-141. doi: 10.1007/BFb0006691. Google Scholar

[12]

D. CioranescuP. Donato and H. Ene, Homogenization of the Stokes problem with non homogeneous slip boundary conditions, Math. Meth. Appl. Sci., 19 (1996), 857-881. doi: 10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D. Google Scholar

[13]

D. CioranescuA. Damlamian and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris Ser. I, 335 (2002), 99-104. doi: 10.1016/S1631-073X(02)02429-9. Google Scholar

[14]

D. CioranescuP. Donato and R. Zaki, Periodic unfolding and Robin problems in perforated domains, C. R. Math., 342 (2006), 469-474. doi: 10.1016/j.crma.2006.01.028. Google Scholar

[15]

D. CioranescuP. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496. Google Scholar

[16]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. of Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942. Google Scholar

[17]

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl., 64 (1985), 31-75. Google Scholar

[18]

P. Donato and Z. Yang, The period unfolding method for the wave equations in domains with holes, Advances in Mathematical Sciences and Applications, 22 (2012), 521-551. Google Scholar

[19]

P. Donato and Z. Yang, The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906. doi: 10.1007/s11425-015-5103-4. Google Scholar

[20]

H. Ene and E. Sanchez-Palencia, Equation et phénomenes de surface pour l'écoulement dans un modèle de milieux poreux, J. Mech., 14 (1975), 73-108. Google Scholar

[21]

R. A. FarrellT. G. FitzgeraldD. BorahJ. D. Holmes and M. A. Morris, Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films, Int. J. of Molecular Sci., 10 (2009), 3671-3712. doi: 10.3390/ijms10093671. Google Scholar

[22]

V. FrishfeldsT. S. Lundström and A. Jakovics, Lattice gas analysis of liquid front in non-crimp fabrics, Transp. Porous Med., 84 (2011), 75-93. doi: 10.1007/s11242-009-9485-z. Google Scholar

[23]

W. Jeon and C. B. Shin, Design and simulation of passive mixing in microfluidic systems with geometric variations, Chem. Eng. J., 152 (2009), 575-582. doi: 10.1016/j.cej.2009.05.035. Google Scholar

[24]

J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris, 1968. Google Scholar

[25]

T. S. LundströmS. Toll and J. M. Håkanson, Measurements of the permeability tensor of compressed fibre beds, Transp. Porous Med., 47 (2002), 363-380. Google Scholar

[26]

S. Marušić and E. Marušić-Paloka, Two-scale convergence for thin domain and its applications to some lower-dimensional model in fluid mechanics, Asymptot. Anal., 23 (2000), 23-57. Google Scholar

[27]

J. Nečas, Les méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967. Google Scholar

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[29]

M. Nordlund and T. S. Lundström, Effect of multi-scale porosity in local permeability modelling of non-crimp fabrics, Transp. Porous Med., 73 (2008), 109-124. doi: 10.1007/s11242-007-9161-0. Google Scholar

[30]

C. ParkJ. Yoon and E. L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns, Polymer, 44 (2003), 6725-6760. doi: 10.1016/j.polymer.2003.08.011. Google Scholar

[31]

F. F. Reuss, Notice sur un Nouvel Effet de L'electricité Galvanique, Mémoire Soc. Sup. Imp. de Moscou, 1809.Google Scholar

[32]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127. Springer-Verlag, Berlin-New York, 1980. Google Scholar

[33]

F. SinghB. Stoeber and S.I. Green, Micro-PIV measurement of flow upstream of papermaking forming fabrics, Transp. Porous Med., 107 (2015), 435-448. doi: 10.1007/s11242-014-0447-8. Google Scholar

[34]

H. Tan and K. M. Pillai, Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows, Compos. Part A Appl. Sci. Manuf., 43 (2012), 1-13. Google Scholar

[35]

L. Tartar, Incompressible fluid flow in a porous medium convergence of the homogenization process., in Appendix to Lecture Notes in Physics, 127 (1980).Google Scholar

[36]

M. Vanninathan, Homogenization of eigenvalues problems in perforated domains, Proc. Indian Acad. of Science, 90 (1981), 239-271. doi: 10.1007/BF02838079. Google Scholar

[37]

R. Zaki, Homogenization of a Stokes problem in a porous medium by the periodic unfolding method, Asymptotic Analysis, 79 (2012), 229-250. Google Scholar

show all references

References:
[1]

J. N. L. Albert and T. H. Epps, Self-assembly of block copolymer thin films, Materials Today, 13 (2010), 24-33. doi: 10.1016/S1369-7021(10)70106-1. Google Scholar

[2]

G. Allaire, Homogenization of the Navier-Stokes equations with a slip boundary condition, Comm. Pure Appl. Math., 44 (1989), 605-642. doi: 10.1002/cpa.3160440602. Google Scholar

[3]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084. Google Scholar

[4]

M. Anguiano and F. J. Suárez-Grau, Homogenization of an incompressible non-Newtonian flow through a thin porous medium, Z. Angew. Math. Phys., 68 (2017), Art. 45, 25 pp. doi: 10.1007/s00033-017-0790-z. Google Scholar

[5]

T. ArbogastJ. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836. doi: 10.1137/0521046. Google Scholar

[6]

A. BourgeatS. Luckhaus and A. Mikelić, Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow, SIAM J. Math.Anal., 27 (1996), 1520-1543. doi: 10.1137/S0036141094276457. Google Scholar

[7]

A. Capatina and H. Ene, Homogenisation of the Stokes problem with a pure non-homogeneous slip boundary condition by the periodic unfolding method, Euro. J. of Applied Mathematics, 22 (2011), 333-345. doi: 10.1017/S0956792511000088. Google Scholar

[8]

D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7. Google Scholar

[9]

D. Cioranescu and P. Donato, Homogénéisation du problème du Neumann non homogène dans des ouverts perforés, Asymptotic Analysis, 1 (1988), 115-138. Google Scholar

[10]

D. Cioranescu and P. Donato, Exact internal controllability in perforated domains, J. Math. Pures Appl., 68 (1989), 185-213. Google Scholar

[11]

D. Cioranescu and J. Saint Jean Paulin, Truss structures: Fourier conditions and eigenvalue problems, in Boundary Control and Boundary Variation (Ed. J.P. Zolezio), Springer-Verlag, 178 (1992), 125-141. doi: 10.1007/BFb0006691. Google Scholar

[12]

D. CioranescuP. Donato and H. Ene, Homogenization of the Stokes problem with non homogeneous slip boundary conditions, Math. Meth. Appl. Sci., 19 (1996), 857-881. doi: 10.1002/(SICI)1099-1476(19960725)19:11<857::AID-MMA798>3.0.CO;2-D. Google Scholar

[13]

D. CioranescuA. Damlamian and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris Ser. I, 335 (2002), 99-104. doi: 10.1016/S1631-073X(02)02429-9. Google Scholar

[14]

D. CioranescuP. Donato and R. Zaki, Periodic unfolding and Robin problems in perforated domains, C. R. Math., 342 (2006), 469-474. doi: 10.1016/j.crma.2006.01.028. Google Scholar

[15]

D. CioranescuP. Donato and R. Zaki, The periodic unfolding method in perforated domains, Portugaliae Mathematica, 63 (2006), 467-496. Google Scholar

[16]

D. CioranescuA. DamlamianP. DonatoG. Griso and R. Zaki, The periodic unfolding method in domains with holes, SIAM J. of Math. Anal., 44 (2012), 718-760. doi: 10.1137/100817942. Google Scholar

[17]

C. Conca, On the application of the homogenization theory to a class of problems arising in fluid mechanics, J. Math. Pures Appl., 64 (1985), 31-75. Google Scholar

[18]

P. Donato and Z. Yang, The period unfolding method for the wave equations in domains with holes, Advances in Mathematical Sciences and Applications, 22 (2012), 521-551. Google Scholar

[19]

P. Donato and Z. Yang, The periodic unfolding method for the heat equation in perforated domains, Science China Mathematics, 59 (2016), 891-906. doi: 10.1007/s11425-015-5103-4. Google Scholar

[20]

H. Ene and E. Sanchez-Palencia, Equation et phénomenes de surface pour l'écoulement dans un modèle de milieux poreux, J. Mech., 14 (1975), 73-108. Google Scholar

[21]

R. A. FarrellT. G. FitzgeraldD. BorahJ. D. Holmes and M. A. Morris, Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films, Int. J. of Molecular Sci., 10 (2009), 3671-3712. doi: 10.3390/ijms10093671. Google Scholar

[22]

V. FrishfeldsT. S. Lundström and A. Jakovics, Lattice gas analysis of liquid front in non-crimp fabrics, Transp. Porous Med., 84 (2011), 75-93. doi: 10.1007/s11242-009-9485-z. Google Scholar

[23]

W. Jeon and C. B. Shin, Design and simulation of passive mixing in microfluidic systems with geometric variations, Chem. Eng. J., 152 (2009), 575-582. doi: 10.1016/j.cej.2009.05.035. Google Scholar

[24]

J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris, 1968. Google Scholar

[25]

T. S. LundströmS. Toll and J. M. Håkanson, Measurements of the permeability tensor of compressed fibre beds, Transp. Porous Med., 47 (2002), 363-380. Google Scholar

[26]

S. Marušić and E. Marušić-Paloka, Two-scale convergence for thin domain and its applications to some lower-dimensional model in fluid mechanics, Asymptot. Anal., 23 (2000), 23-57. Google Scholar

[27]

J. Nečas, Les méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, 1967. Google Scholar

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043. Google Scholar

[29]

M. Nordlund and T. S. Lundström, Effect of multi-scale porosity in local permeability modelling of non-crimp fabrics, Transp. Porous Med., 73 (2008), 109-124. doi: 10.1007/s11242-007-9161-0. Google Scholar

[30]

C. ParkJ. Yoon and E. L. Thomas, Enabling nanotechnology with self assembled block copolymer patterns, Polymer, 44 (2003), 6725-6760. doi: 10.1016/j.polymer.2003.08.011. Google Scholar

[31]

F. F. Reuss, Notice sur un Nouvel Effet de L'electricité Galvanique, Mémoire Soc. Sup. Imp. de Moscou, 1809.Google Scholar

[32]

E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127. Springer-Verlag, Berlin-New York, 1980. Google Scholar

[33]

F. SinghB. Stoeber and S.I. Green, Micro-PIV measurement of flow upstream of papermaking forming fabrics, Transp. Porous Med., 107 (2015), 435-448. doi: 10.1007/s11242-014-0447-8. Google Scholar

[34]

H. Tan and K. M. Pillai, Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows, Compos. Part A Appl. Sci. Manuf., 43 (2012), 1-13. Google Scholar

[35]

L. Tartar, Incompressible fluid flow in a porous medium convergence of the homogenization process., in Appendix to Lecture Notes in Physics, 127 (1980).Google Scholar

[36]

M. Vanninathan, Homogenization of eigenvalues problems in perforated domains, Proc. Indian Acad. of Science, 90 (1981), 239-271. doi: 10.1007/BF02838079. Google Scholar

[37]

R. Zaki, Homogenization of a Stokes problem in a porous medium by the periodic unfolding method, Asymptotic Analysis, 79 (2012), 229-250. Google Scholar

Figure 1.  Views of a periodic cell in 2D (left) and 3D (right)
Figure 2.  View of $ \omega_\varepsilon $
Figure 3.  Views of the domain $ \Omega_\varepsilon $ (left) and $ \Lambda_\varepsilon $ (right)
[1]

Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219

[2]

Anna Marciniak-Czochra, Andro Mikelić. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 1065-1077. doi: 10.3934/dcdss.2014.7.1065

[3]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[4]

M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 473-481. doi: 10.3934/dcdss.2009.2.473

[5]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[6]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[7]

Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104

[8]

Nassif Ghoussoub. Superposition of selfdual functionals in non-homogeneous boundary value problems and differential systems. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 187-220. doi: 10.3934/dcds.2008.21.187

[9]

Alain Miranville, Costică Moroşanu. Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 537-556. doi: 10.3934/dcdss.2016011

[10]

Shitao Liu, Roberto Triggiani. Recovering damping and potential coefficients for an inverse non-homogeneous second-order hyperbolic problem via a localized Neumann boundary trace. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5217-5252. doi: 10.3934/dcds.2013.33.5217

[11]

Laurent Denis, Anis Matoussi, Jing Zhang. The obstacle problem for quasilinear stochastic PDEs with non-homogeneous operator. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5185-5202. doi: 10.3934/dcds.2015.35.5185

[12]

Demetris Hadjiloucas. Stochastic matrix-valued cocycles and non-homogeneous Markov chains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 731-738. doi: 10.3934/dcds.2007.17.731

[13]

Christine Chambers, Nassif Ghoussoub. Deformation from symmetry and multiplicity of solutions in non-homogeneous problems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 267-281. doi: 10.3934/dcds.2002.8.267

[14]

Donatella Donatelli, Eduard Feireisl, Antonín Novotný. On incompressible limits for the Navier-Stokes system on unbounded domains under slip boundary conditions. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 783-798. doi: 10.3934/dcdsb.2010.13.783

[15]

Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083

[16]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[17]

Jing Li, Yifu Wang, Jingxue Yin. Non-sharp travelling waves for a dual porous medium equation. Communications on Pure & Applied Analysis, 2016, 15 (2) : 623-636. doi: 10.3934/cpaa.2016.15.623

[18]

Panagiota Daskalopoulos, Eunjai Rhee. Free-boundary regularity for generalized porous medium equations. Communications on Pure & Applied Analysis, 2003, 2 (4) : 481-494. doi: 10.3934/cpaa.2003.2.481

[19]

Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285

[20]

Jaroslav Haslinger, Raino A. E. Mäkinen, Jan Stebel. Shape optimization for Stokes problem with threshold slip boundary conditions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1281-1301. doi: 10.3934/dcdss.2017069

2018 Impact Factor: 0.871

Metrics

  • PDF downloads (47)
  • HTML views (244)
  • Cited by (0)

[Back to Top]