2001, 2001(Special): 66-73. doi: 10.3934/proc.2001.2001.66

Some new qualittative properties on the solvability set of pendulum-type equations

1. 

Departamento de Análisis Matemático, Universidad de Granada, 18071, Granada

2. 

Departamento de Matemática Aplicada, Facultad de Ciencias, Universidad de Granada, E-18071, Granada, Spain

Published  November 2013

Please refer to Full Text.
Citation: Antonio Cañada, Antonio J. Ureña. Some new qualittative properties on the solvability set of pendulum-type equations. Conference Publications, 2001, 2001 (Special) : 66-73. doi: 10.3934/proc.2001.2001.66
[1]

Feliz Minhós, João Fialho. On the solvability of some fourth-order equations with functional boundary conditions. Conference Publications, 2009, 2009 (Special) : 564-573. doi: 10.3934/proc.2009.2009.564

[2]

Tôn Việt Tạ. Existence results for linear evolution equations of parabolic type. Communications on Pure & Applied Analysis, 2018, 17 (3) : 751-785. doi: 10.3934/cpaa.2018039

[3]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[4]

Tetsutaro Shibata. Boundary layer and variational eigencurve in two-parameter single pendulum type equations. Communications on Pure & Applied Analysis, 2006, 5 (1) : 147-154. doi: 10.3934/cpaa.2006.5.147

[5]

Julii A. Dubinskii. Complex Neumann type boundary problem and decomposition of Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1/2) : 201-210. doi: 10.3934/dcds.2004.10.201

[6]

Vasily Denisov and Andrey Muravnik. On asymptotic behavior of solutions of the Dirichlet problem in half-space for linear and quasi-linear elliptic equations. Electronic Research Announcements, 2003, 9: 88-93.

[7]

Davide Guidetti. Partial reconstruction of the source term in a linear parabolic initial problem with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11/12) : 5107-5141. doi: 10.3934/dcds.2013.33.5107

[8]

Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061

[9]

B. Abdellaoui, E. Colorado, I. Peral. Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2006, 5 (1) : 29-54. doi: 10.3934/cpaa.2006.5.29

[10]

In-Soo Baek, Lars Olsen. Baire category and extremely non-normal points of invariant sets of IFS's. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 935-943. doi: 10.3934/dcds.2010.27.935

[11]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

[12]

Erik Ekström, Johan Tysk. A boundary point lemma for Black-Scholes type operators. Communications on Pure & Applied Analysis, 2006, 5 (3) : 505-514. doi: 10.3934/cpaa.2006.5.505

[13]

Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63

[14]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11/12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[15]

Micol Amar. A note on boundary layer effects in periodic homogenization with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 537-556. doi: 10.3934/dcds.2000.6.537

[16]

Jan Andres, Luisa Malaguti, Martina Pavlačková. Hartman-type conditions for multivalued Dirichlet problem in abstract spaces. Conference Publications, 2015, 2015 (special) : 38-55. doi: 10.3934/proc.2015.0038

[17]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure & Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[18]

Onur Alp İlhan. Solvability of some volterra type integral equations in hilbert space. Conference Publications, 2007, 2007 (Special) : 28-34. doi: 10.3934/proc.2007.2007.28

[19]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations & Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[20]

Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets. Conference Publications, 2007, 2007 (Special) : 181-190. doi: 10.3934/proc.2007.2007.181

 Impact Factor: 

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]