
Previous Article
Finding openloop Nash equilibrium for variational games
 PROC Home
 This Issue

Next Article
Steady states of a strongly coupled preypredator model
Weighted HardyLittlewoodSobolev inequalities and systems of integral equations
1.  Department of Mathematics, Yeshiva University, New York, NY 10033 
2.  Department of Applied Mathematics, University of Colorado at Boulder, United States 
3.  Department of Applied Mathematics, University of Colorado at Boulder, Campus Box 526, Boulder, CO 803090526, United States 
[1] 
Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted HardyLittlewoodSobolev type integral system. Discrete & Continuous Dynamical Systems  A, 2016, 36 (7) : 37913810. doi: 10.3934/dcds.2016.36.3791 
[2] 
Ze Cheng, Genggeng Huang, Congming Li. On the HardyLittlewoodSobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 20592074. doi: 10.3934/cpaa.2016027 
[3] 
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 19251932. doi: 10.3934/cpaa.2009.8.1925 
[4] 
Lorenzo D'Ambrosio, Enzo Mitidieri. HardyLittlewoodSobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems  S, 2014, 7 (4) : 653671. doi: 10.3934/dcdss.2014.7.653 
[5] 
Ze Cheng, Congming Li. An extended discrete HardyLittlewoodSobolev inequality. Discrete & Continuous Dynamical Systems  A, 2014, 34 (5) : 19511959. doi: 10.3934/dcds.2014.34.1951 
[6] 
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an EulerLagrange system of the weighted HardyLittlewoodSobolev inequality. Discrete & Continuous Dynamical Systems  A, 2013, 33 (5) : 19872005. doi: 10.3934/dcds.2013.33.1987 
[7] 
Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete HardyLittlewoodSobolev inequality. Discrete & Continuous Dynamical Systems  A, 2015, 35 (3) : 935942. doi: 10.3934/dcds.2015.35.935 
[8] 
Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical HardyLittlewoodSobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 13451358. doi: 10.3934/dcds.2019057 
[9] 
Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems  A, 2011, 30 (4) : 10831093. doi: 10.3934/dcds.2011.30.1083 
[10] 
GuiDong Li, ChunLei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical HardyLittlewoodSobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285300. doi: 10.3934/cpaa.2019015 
[11] 
Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic HardyLittlewoodSobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems  A, 2018, 38 (8) : 39393953. doi: 10.3934/dcds.2018171 
[12] 
Wei Dai, Zhao Liu, Guozhen Lu. HardySobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 12531264. doi: 10.3934/cpaa.2017061 
[13] 
Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 11211134. doi: 10.3934/cpaa.2017054 
[14] 
Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625641. doi: 10.3934/cpaa.2019031 
[15] 
Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885904. doi: 10.3934/cpaa.2010.9.885 
[16] 
Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 18251840. doi: 10.3934/cpaa.2016017 
[17] 
Kunquan Lan, Wei Lin. Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 19431960. doi: 10.3934/dcdsb.2018256 
[18] 
Yingshu Lü, Chunqin Zhou. Symmetry for an integral system with general nonlinearity. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 15331543. doi: 10.3934/dcds.2018121 
[19] 
Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 861883. doi: 10.3934/cpaa.2012.11.861 
[20] 
Rui Zhang, YongKui Chang, G. M. N'Guérékata. Weighted pseudo almost automorphic mild solutions to semilinear integral equations with $S^{p}$weighted pseudo almost automorphic coefficients. Discrete & Continuous Dynamical Systems  A, 2013, 33 (11&12) : 55255537. doi: 10.3934/dcds.2013.33.5525 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]