
Previous Article
A unique positive solution to a system of semilinear elliptic equations
 PROC Home
 This Issue

Next Article
An approximation model for the densitydependent magnetohydrodynamic equations
Decay property of regularityloss type for quasilinear hyperbolic systems of viscoelasticity
1.  Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishiku, Fukuoka 8190395, Japan 
References:
show all references
References:
[1] 
Monica Conti, V. Pata. Weakly dissipative semilinear equations of viscoelasticity. Communications on Pure & Applied Analysis, 2005, 4 (4) : 705720. doi: 10.3934/cpaa.2005.4.705 
[2] 
Nakao Hayashi, Chunhua Li, Pavel I. Naumkin. Upper and lower time decay bounds for solutions of dissipative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2017, 16 (6) : 20892104. doi: 10.3934/cpaa.2017103 
[3] 
SunHo Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible NavierStokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465479. doi: 10.3934/nhm.2013.8.465 
[4] 
Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 13511358. doi: 10.3934/cpaa.2019065 
[5] 
Marat Akhmet, Duygu Aruğaslan. LyapunovRazumikhin method for differential equations with piecewise constant argument. Discrete & Continuous Dynamical Systems  A, 2009, 25 (2) : 457466. doi: 10.3934/dcds.2009.25.457 
[6] 
Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a timevarying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems  B, 2017, 22 (2) : 491506. doi: 10.3934/dcdsb.2017024 
[7] 
Luciano Pandolfi. Riesz systems and moment method in the study of viscoelasticity in one space dimension. Discrete & Continuous Dynamical Systems  B, 2010, 14 (4) : 14871510. doi: 10.3934/dcdsb.2010.14.1487 
[8] 
Makoto Nakamura. Remarks on global solutions of dissipative wave equations with exponential nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 15331545. doi: 10.3934/cpaa.2015.14.1533 
[9] 
Michinori Ishiwata, Makoto Nakamura, Hidemitsu Wadade. Remarks on the Cauchy problem of KleinGordon equations with weighted nonlinear terms. Discrete & Continuous Dynamical Systems  A, 2015, 35 (10) : 48894903. doi: 10.3934/dcds.2015.35.4889 
[10] 
Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147153. doi: 10.3934/jmd.2007.1.147 
[11] 
Yi Yang, Robert J. Sacker. Periodic unimodal Allee maps, the semigroup property and the $\lambda$Ricker map with Allee effect. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 589606. doi: 10.3934/dcdsb.2014.19.589 
[12] 
Gustavo Alberto Perla Menzala, Julian Moises Sejje Suárez. A thermo piezoelectric model: Exponential decay of the total energy. Discrete & Continuous Dynamical Systems  A, 2013, 33 (11&12) : 52735292. doi: 10.3934/dcds.2013.33.5273 
[13] 
Mohammed Aassila. On energy decay rate for linear damped systems. Discrete & Continuous Dynamical Systems  A, 2002, 8 (4) : 851864. doi: 10.3934/dcds.2002.8.851 
[14] 
Rachid Assel, Mohamed Ghazel. Energy decay for the damped wave equation on an unbounded network. Evolution Equations & Control Theory, 2018, 7 (3) : 335351. doi: 10.3934/eect.2018017 
[15] 
Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems  A, 1998, 4 (4) : 721734. doi: 10.3934/dcds.1998.4.721 
[16] 
Abdelaziz Soufyane, Belkacem SaidHouari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713738. doi: 10.3934/eect.2014.3.713 
[17] 
Yongqin Liu, Shuichi Kawashima. Decay property for a plate equation with memorytype dissipation. Kinetic & Related Models, 2011, 4 (2) : 531547. doi: 10.3934/krm.2011.4.531 
[18] 
Shikuan Mao, Yongqin Liu. Decay property for solutions to plate type equations with variable coefficients. Kinetic & Related Models, 2017, 10 (3) : 785797. doi: 10.3934/krm.2017031 
[19] 
Jian Zhang, Wen Zhang. Existence and decay property of ground state solutions for Hamiltonian elliptic system. Communications on Pure & Applied Analysis, 2019, 18 (5) : 24332455. doi: 10.3934/cpaa.2019110 
[20] 
Xin Yu, Guojie Zheng, Chao Xu. The $C$regularized semigroup method for partial differential equations with delays. Discrete & Continuous Dynamical Systems  A, 2016, 36 (9) : 51635181. doi: 10.3934/dcds.2016024 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]