-
Previous Article
Abstract theory of variational inequalities and Lagrange multipliers
- PROC Home
- This Issue
-
Next Article
The role of lower and upper solutions in the generalization of Lidstone problems
A reinjected cuspidal horseshoe
1. | Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton, United States, United States |
References:
[1] |
Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst. 8, 8 (2009), 757.
|
[2] |
P. Bonckaert, V. Naudot, Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three,, Ann. Fac. Sci. Toulouse. Math. 6, 6 (2001), 595.
|
[3] |
S.N. Chow, B. Deng, B. Fiedler, Homoclinic bifurcation at resonant eigenvalues,, Journ. Dynamics and Diff. Eq., 2 (1990), 177.
|
[4] |
S. Day, R. Frongillo, R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics,, SIAM J. Appl. Dyn. Syst. 7, 7 (2008), 1477.
|
[5] |
B. Deng, Homoclinic twisting bifurcation and cusp horseshoe maps,, J. Dyn. Diff.Eq. 5, 5 (1993), 417.
|
[6] |
S. Day, O. Junge, K. Mischaikow, Towards automated chaos verification,, EQUADIFF 2003, (2003), 157.
|
[7] |
M. Dellnitz, A. Hohmann, O. Junge, M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221.
|
[8] |
M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds,, Lect. Notes Math. 583 Springer 1977., 583 (1977).
|
[9] |
A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields,, Memoirs A.M.S. 578, 578 (1996).
|
[10] |
A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Sys. 14 (1994), 14 (1994), 667.
|
[11] |
W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comput. Math. 5, 5 (2005), 409.
|
[12] |
M. Kisaka, H. Kokubu, K. Oka, Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields,, Journ. Dynamics and Diff. Eq. 5, 5 (1993), 305.
|
[13] |
J. Moser., Stable and Random Motions in Dynamical Systems,, Annals of Math. Studies. Princeton University Press, (1973).
|
[14] |
V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Syst. 16, 16 (1996), 1071.
|
[15] |
V. Naudot, Bifurcations homoclines des champs de vecteurs en dimension trois,, Thèse de l'Université de Bourgogne, (1996). Google Scholar |
[16] |
V. Naudot, J. Yang, Linearization of families of germs of hyperbolic vector fields,, Dyn. Syst. 23, 23 (2008), 467.
|
[17] |
J. Palis, F. Takens., "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and infinitely many Attractors'',, Cambridge University Press 1993., (1993).
|
[18] |
J. Palis, W. de Melo, Geometric Theory of Dynamical Systems. An introdcution,, Springer Verlag 1982., (1982).
|
[19] |
M.R. Rychlik, Lorenz attractors through Shil'nikov-type bifurcation. Part I,, Ergod. Th. & Dynam. Syst. 10, 10 (1990), 793.
|
[20] |
S. Smale, Differential dynamical systems,, Bull. Am. Math. Soc. 73, 73 (1967), 747.
|
show all references
References:
[1] |
Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst. 8, 8 (2009), 757.
|
[2] |
P. Bonckaert, V. Naudot, Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three,, Ann. Fac. Sci. Toulouse. Math. 6, 6 (2001), 595.
|
[3] |
S.N. Chow, B. Deng, B. Fiedler, Homoclinic bifurcation at resonant eigenvalues,, Journ. Dynamics and Diff. Eq., 2 (1990), 177.
|
[4] |
S. Day, R. Frongillo, R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics,, SIAM J. Appl. Dyn. Syst. 7, 7 (2008), 1477.
|
[5] |
B. Deng, Homoclinic twisting bifurcation and cusp horseshoe maps,, J. Dyn. Diff.Eq. 5, 5 (1993), 417.
|
[6] |
S. Day, O. Junge, K. Mischaikow, Towards automated chaos verification,, EQUADIFF 2003, (2003), 157.
|
[7] |
M. Dellnitz, A. Hohmann, O. Junge, M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221.
|
[8] |
M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds,, Lect. Notes Math. 583 Springer 1977., 583 (1977).
|
[9] |
A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields,, Memoirs A.M.S. 578, 578 (1996).
|
[10] |
A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Sys. 14 (1994), 14 (1994), 667.
|
[11] |
W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comput. Math. 5, 5 (2005), 409.
|
[12] |
M. Kisaka, H. Kokubu, K. Oka, Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields,, Journ. Dynamics and Diff. Eq. 5, 5 (1993), 305.
|
[13] |
J. Moser., Stable and Random Motions in Dynamical Systems,, Annals of Math. Studies. Princeton University Press, (1973).
|
[14] |
V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Syst. 16, 16 (1996), 1071.
|
[15] |
V. Naudot, Bifurcations homoclines des champs de vecteurs en dimension trois,, Thèse de l'Université de Bourgogne, (1996). Google Scholar |
[16] |
V. Naudot, J. Yang, Linearization of families of germs of hyperbolic vector fields,, Dyn. Syst. 23, 23 (2008), 467.
|
[17] |
J. Palis, F. Takens., "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and infinitely many Attractors'',, Cambridge University Press 1993., (1993).
|
[18] |
J. Palis, W. de Melo, Geometric Theory of Dynamical Systems. An introdcution,, Springer Verlag 1982., (1982).
|
[19] |
M.R. Rychlik, Lorenz attractors through Shil'nikov-type bifurcation. Part I,, Ergod. Th. & Dynam. Syst. 10, 10 (1990), 793.
|
[20] |
S. Smale, Differential dynamical systems,, Bull. Am. Math. Soc. 73, 73 (1967), 747.
|
[1] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[2] |
Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68. |
[3] |
Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021 doi: 10.3934/fods.2021005 |
[4] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[5] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[6] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[7] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[8] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[9] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[10] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]