2013, 2013(special): 227-236. doi: 10.3934/proc.2013.2013.227

A reinjected cuspidal horseshoe

1. 

Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton, United States, United States

Received  September 2012 Revised  July 2013 Published  November 2013

Horseshoes play a central role in dynamical systems and are observed in many chaotic systems. However most points in a neighborhood of the horseshoe escape after finite iterations. In this work we construct a model that possesses an attracting set that contains a cuspidal horseshoe with positive entropy. This model is obtained by reinjecting the points that escape the horseshoe and can be realized in a 3-dimensional vector field.
Citation: Marcus Fontaine, William D. Kalies, Vincent Naudot. A reinjected cuspidal horseshoe. Conference Publications, 2013, 2013 (special) : 227-236. doi: 10.3934/proc.2013.2013.227
References:
[1]

Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst. 8, 8 (2009), 757.   Google Scholar

[2]

P. Bonckaert, V. Naudot, Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three,, Ann. Fac. Sci. Toulouse. Math. 6, 6 (2001), 595.   Google Scholar

[3]

S.N. Chow, B. Deng, B. Fiedler, Homoclinic bifurcation at resonant eigenvalues,, Journ. Dynamics and Diff. Eq., 2 (1990), 177.   Google Scholar

[4]

S. Day, R. Frongillo, R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics,, SIAM J. Appl. Dyn. Syst. 7, 7 (2008), 1477.   Google Scholar

[5]

B. Deng, Homoclinic twisting bifurcation and cusp horseshoe maps,, J. Dyn. Diff.Eq. 5, 5 (1993), 417.   Google Scholar

[6]

S. Day, O. Junge, K. Mischaikow, Towards automated chaos verification,, EQUADIFF 2003, (2003), 157.   Google Scholar

[7]

M. Dellnitz, A. Hohmann, O. Junge, M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221.   Google Scholar

[8]

M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds,, Lect. Notes Math. 583 Springer 1977., 583 (1977).   Google Scholar

[9]

A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields,, Memoirs A.M.S. 578, 578 (1996).   Google Scholar

[10]

A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Sys. 14 (1994), 14 (1994), 667.   Google Scholar

[11]

W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comput. Math. 5, 5 (2005), 409.   Google Scholar

[12]

M. Kisaka, H. Kokubu, K. Oka, Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields,, Journ. Dynamics and Diff. Eq. 5, 5 (1993), 305.   Google Scholar

[13]

J. Moser., Stable and Random Motions in Dynamical Systems,, Annals of Math. Studies. Princeton University Press, (1973).   Google Scholar

[14]

V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Syst. 16, 16 (1996), 1071.   Google Scholar

[15]

V. Naudot, Bifurcations homoclines des champs de vecteurs en dimension trois,, Thèse de l'Université de Bourgogne, (1996).   Google Scholar

[16]

V. Naudot, J. Yang, Linearization of families of germs of hyperbolic vector fields,, Dyn. Syst. 23, 23 (2008), 467.   Google Scholar

[17]

J. Palis, F. Takens., "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and infinitely many Attractors'',, Cambridge University Press 1993., (1993).   Google Scholar

[18]

J. Palis, W. de Melo, Geometric Theory of Dynamical Systems. An introdcution,, Springer Verlag 1982., (1982).   Google Scholar

[19]

M.R. Rychlik, Lorenz attractors through Shil'nikov-type bifurcation. Part I,, Ergod. Th. & Dynam. Syst. 10, 10 (1990), 793.   Google Scholar

[20]

S. Smale, Differential dynamical systems,, Bull. Am. Math. Soc. 73, 73 (1967), 747.   Google Scholar

show all references

References:
[1]

Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems,, SIAM J. Appl. Dyn. Syst. 8, 8 (2009), 757.   Google Scholar

[2]

P. Bonckaert, V. Naudot, Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three,, Ann. Fac. Sci. Toulouse. Math. 6, 6 (2001), 595.   Google Scholar

[3]

S.N. Chow, B. Deng, B. Fiedler, Homoclinic bifurcation at resonant eigenvalues,, Journ. Dynamics and Diff. Eq., 2 (1990), 177.   Google Scholar

[4]

S. Day, R. Frongillo, R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics,, SIAM J. Appl. Dyn. Syst. 7, 7 (2008), 1477.   Google Scholar

[5]

B. Deng, Homoclinic twisting bifurcation and cusp horseshoe maps,, J. Dyn. Diff.Eq. 5, 5 (1993), 417.   Google Scholar

[6]

S. Day, O. Junge, K. Mischaikow, Towards automated chaos verification,, EQUADIFF 2003, (2003), 157.   Google Scholar

[7]

M. Dellnitz, A. Hohmann, O. Junge, M. Rumpf, Exploring invariant sets and invariant measures,, Chaos, 7 (1997), 221.   Google Scholar

[8]

M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds,, Lect. Notes Math. 583 Springer 1977., 583 (1977).   Google Scholar

[9]

A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields,, Memoirs A.M.S. 578, 578 (1996).   Google Scholar

[10]

A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Sys. 14 (1994), 14 (1994), 667.   Google Scholar

[11]

W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence,, Found. Comput. Math. 5, 5 (2005), 409.   Google Scholar

[12]

M. Kisaka, H. Kokubu, K. Oka, Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields,, Journ. Dynamics and Diff. Eq. 5, 5 (1993), 305.   Google Scholar

[13]

J. Moser., Stable and Random Motions in Dynamical Systems,, Annals of Math. Studies. Princeton University Press, (1973).   Google Scholar

[14]

V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit,, Ergod. Th. & Dynam. Syst. 16, 16 (1996), 1071.   Google Scholar

[15]

V. Naudot, Bifurcations homoclines des champs de vecteurs en dimension trois,, Thèse de l'Université de Bourgogne, (1996).   Google Scholar

[16]

V. Naudot, J. Yang, Linearization of families of germs of hyperbolic vector fields,, Dyn. Syst. 23, 23 (2008), 467.   Google Scholar

[17]

J. Palis, F. Takens., "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and infinitely many Attractors'',, Cambridge University Press 1993., (1993).   Google Scholar

[18]

J. Palis, W. de Melo, Geometric Theory of Dynamical Systems. An introdcution,, Springer Verlag 1982., (1982).   Google Scholar

[19]

M.R. Rychlik, Lorenz attractors through Shil'nikov-type bifurcation. Part I,, Ergod. Th. & Dynam. Syst. 10, 10 (1990), 793.   Google Scholar

[20]

S. Smale, Differential dynamical systems,, Bull. Am. Math. Soc. 73, 73 (1967), 747.   Google Scholar

[1]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[2]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[3]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[4]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[5]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[6]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[7]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[8]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[9]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[10]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

 Impact Factor: 

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

[Back to Top]