2013, 2013(special): 237-246. doi: 10.3934/proc.2013.2013.237

Abstract theory of variational inequalities and Lagrange multipliers

1. 

Department of Mathematics, Kyoto University of Education, Fuji 1, Fukakusa Fushimi-ku, Kyoto 612-8522

2. 

Department of Education, School of Education, Bukkyo University, 96 Kitahananobo-cho, Murasakino, Kita-ku, Kyoto, 603-8301

Received  October 2012 Revised  April 2013 Published  November 2013

In this paper, the existence and uniqueness questions of abstract parabolic variational inequalities are considered in connection with Lagrange multipliers. The focus of authors' attention is the characterization of parabolic variational inequalities by means of Lagrange multipliers. It is well-known that various kinds of parabolic differential equations under convex constraints are represented by variational inequalities with time-dependent constraints, and the usage of Lagrange multipliers associated with constraints makes it possible to reformulate the variational inequalities as equations. In this paper, as a typical case, a parabolic problem with nonlocal time-dependent obstacle is treated in the framework of abstract evolution equations governed by time-dependent subdifferentials.
Citation: Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237
References:
[1]

V. Barbu and Th. Precupanu, Convexity and optimization in Banach space,, D. Reidel Publishing Company, (1986).   Google Scholar

[2]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures Appl. (9), 51 (1972), 1.   Google Scholar

[3]

H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps,, C. R. Acad. Sci. Paris, 274 (1972), 310.   Google Scholar

[4]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[5]

E. Ginder, Construction of solutions to heat-type problems with time-dependent volume constraints,, Adv. Math. Sci. Appl., 20 (2010), 467.   Google Scholar

[6]

E. Ginder and K. Švadlenka, The discrete Morse flow for volume-controlled membrane motions,, Adv. Math. Sci. Appl., 22 (2012), 1.   Google Scholar

[7]

A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with Signorini boundary condition,, Adv. Math. Sci. Appl., 17 (2007), 337.   Google Scholar

[8]

K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications,, Advances in Design and Control, (2008).   Google Scholar

[9]

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications,, Academic Press, (1980).   Google Scholar

[10]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, M. Chipot (Ed.), Vol.4 (2007), 203.   Google Scholar

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, The Bull. Fac. Education, 30 (1981), 1.   Google Scholar

[12]

M. Kubo, The Cahn-Hilliard equation with time-dependent constraint,, Nonlinear Anal., 75 (2012), 5672.   Google Scholar

[13]

M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, shocks and dry friction,, Progr. Nonlinear Differential Equations Appl., (1993).   Google Scholar

[14]

K. Švadlenka and S. Omata, Mathematical modelling of surface vibration with volume constraint and its analysis,, Nonlinear Anal., 69 (2008), 3202.   Google Scholar

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), 491.   Google Scholar

[16]

N. Yamazaki, A. Ito and N. Kenmochi, Global attractors of time-dependent double obstacle problems,, pp. 288-301 in Functional analysis and global analysis, (1997), 288.   Google Scholar

show all references

References:
[1]

V. Barbu and Th. Precupanu, Convexity and optimization in Banach space,, D. Reidel Publishing Company, (1986).   Google Scholar

[2]

H. Brézis, Problèmes unilatéraux,, J. Math. Pures Appl. (9), 51 (1972), 1.   Google Scholar

[3]

H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps,, C. R. Acad. Sci. Paris, 274 (1972), 310.   Google Scholar

[4]

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[5]

E. Ginder, Construction of solutions to heat-type problems with time-dependent volume constraints,, Adv. Math. Sci. Appl., 20 (2010), 467.   Google Scholar

[6]

E. Ginder and K. Švadlenka, The discrete Morse flow for volume-controlled membrane motions,, Adv. Math. Sci. Appl., 22 (2012), 1.   Google Scholar

[7]

A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with Signorini boundary condition,, Adv. Math. Sci. Appl., 17 (2007), 337.   Google Scholar

[8]

K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications,, Advances in Design and Control, (2008).   Google Scholar

[9]

D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications,, Academic Press, (1980).   Google Scholar

[10]

N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities,, M. Chipot (Ed.), Vol.4 (2007), 203.   Google Scholar

[11]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, The Bull. Fac. Education, 30 (1981), 1.   Google Scholar

[12]

M. Kubo, The Cahn-Hilliard equation with time-dependent constraint,, Nonlinear Anal., 75 (2012), 5672.   Google Scholar

[13]

M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, shocks and dry friction,, Progr. Nonlinear Differential Equations Appl., (1993).   Google Scholar

[14]

K. Švadlenka and S. Omata, Mathematical modelling of surface vibration with volume constraint and its analysis,, Nonlinear Anal., 69 (2008), 3202.   Google Scholar

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23 (1976), 491.   Google Scholar

[16]

N. Yamazaki, A. Ito and N. Kenmochi, Global attractors of time-dependent double obstacle problems,, pp. 288-301 in Functional analysis and global analysis, (1997), 288.   Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[6]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[7]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[8]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[9]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[12]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[13]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[14]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[15]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[16]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[17]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[18]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

 Impact Factor: 

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]