2013, 2013(special): 535-544. doi: 10.3934/proc.2013.2013.535

On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients

1. 

Dipartimento di Matematica e Informatica, Università di Cagliari, 09123

Received  September 2012 Revised  December 2012 Published  November 2013

This paper deals with the blow-up of the solutions to a class of nonlinear parabolic equations with Dirichlet boundary condition and time dependent coefficients. Under some conditions on the data and geometry of the spatial domain, explicit upper and lower bounds for the blow-up time are derived. Moreover, the influence of the data on the behaviour of the solution is investigated to obtain global existence.
Citation: Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535
References:
[1]

J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations,, Quart. J. Math. Oxford 28, 28 (1977), 473. Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo 13, 13 (1966), 109. Google Scholar

[3]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math.12, 12 (1974), 121. Google Scholar

[4]

H.A. Levine, The role of the critical exponents in blow-up theorems,, SIAM Review 32, 32 (1990), 262. Google Scholar

[5]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim. 32, 32 (2011). Google Scholar

[6]

M. Marras, S.Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete and Continuous Dynamical Systems 32, 32 (2012), 4001. Google Scholar

[7]

M. Marras, S.Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete and Continuous Dynamical Systems, (2011), 1025. Google Scholar

[8]

L.E. Payne, G.A. Philippin, Blow up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions,, Proc. Amer. Math. Soc. 141, 141 (2013), 2309. Google Scholar

[9]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems,, J.Math. Anal. Appl. 338 (2008), 338 (2008), 438. Google Scholar

[10]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Analysis. 69 (2008), 69 (2008), 3495. Google Scholar

[11]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971. Google Scholar

[12]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971. Google Scholar

[13]

L.E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions,, J. Math. Anal. Appl., 328 (2007), 1196. Google Scholar

[14]

L.E. Payne, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. of Pure and Applied Math., 42 (2008), 193. Google Scholar

[15]

P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states,, Birkhäuser Advanced Texts, (2007). Google Scholar

[16]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. Google Scholar

[17]

F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J. 29 (1980), 29 (1980), 79. Google Scholar

[18]

F.B. Weissler, Existence and nonexistence of global solutions for a heat equation,, Israel J.Math. 38 (1981), 38 (1981), 1. Google Scholar

show all references

References:
[1]

J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations,, Quart. J. Math. Oxford 28, 28 (1977), 473. Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo 13, 13 (1966), 109. Google Scholar

[3]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math.12, 12 (1974), 121. Google Scholar

[4]

H.A. Levine, The role of the critical exponents in blow-up theorems,, SIAM Review 32, 32 (1990), 262. Google Scholar

[5]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim. 32, 32 (2011). Google Scholar

[6]

M. Marras, S.Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete and Continuous Dynamical Systems 32, 32 (2012), 4001. Google Scholar

[7]

M. Marras, S.Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete and Continuous Dynamical Systems, (2011), 1025. Google Scholar

[8]

L.E. Payne, G.A. Philippin, Blow up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions,, Proc. Amer. Math. Soc. 141, 141 (2013), 2309. Google Scholar

[9]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems,, J.Math. Anal. Appl. 338 (2008), 338 (2008), 438. Google Scholar

[10]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Analysis. 69 (2008), 69 (2008), 3495. Google Scholar

[11]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971. Google Scholar

[12]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971. Google Scholar

[13]

L.E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions,, J. Math. Anal. Appl., 328 (2007), 1196. Google Scholar

[14]

L.E. Payne, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. of Pure and Applied Math., 42 (2008), 193. Google Scholar

[15]

P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states,, Birkhäuser Advanced Texts, (2007). Google Scholar

[16]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353. Google Scholar

[17]

F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J. 29 (1980), 29 (1980), 79. Google Scholar

[18]

F.B. Weissler, Existence and nonexistence of global solutions for a heat equation,, Israel J.Math. 38 (1981), 38 (1981), 1. Google Scholar

[1]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[2]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

[3]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[4]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[5]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[6]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[7]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[8]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[9]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[10]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[11]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[12]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[13]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[14]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[15]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[16]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[17]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[18]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[19]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[20]

Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941

 Impact Factor: 

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]