2013, 2013(special): 825-835. doi: 10.3934/proc.2013.2013.825

Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport

1. 

Southern Polytechnic State University, Marietta, GA 30060, United States

2. 

Southern Polytechnic State University, Marietta, GA 30060-2896

3. 

Texas Tech University, Lubbock, TX 79409, United States

Received  September 2012 Revised  December 2012 Published  November 2013

Macrophage derived foam cells are a major constituent of the fatty deposits characterizing the disease atherosclerosis. Foam cells are formed when certain immune cells (macrophages) take on oxidized low density lipoproteins through failed phagocytosis. High density lipoproteins (HDL) are known to have a number of anti-atherogenic effects. One of these stems from their ability to remove excess cellular cholesterol for processing in the liver---a process called reverse cholesterol transport (RCT). HDL perform macrophage RCT by binding to forming foam cells and removing excess lipids by efflux transporters.
    We propose a model of foam cell formation accounting for macrophage RCT. This model is presented as a system of non-linear ordinary differential equations. Motivated by experimental observations regarding time scales for oxidation of lipids and MRCT, we impose a quasi-steady state assumption and analyze the resulting systems of equations. We focus on the existence and stability of equilibrium solutions as determined by the governing parameters with the results interpreted in terms of their potential bio-medical implications.
Citation: Shuai Zhang, L.R. Ritter, A.I. Ibragimov. Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport. Conference Publications, 2013, 2013 (special) : 825-835. doi: 10.3934/proc.2013.2013.825
References:
[1]

T. Bjornheden, A. Babiy, G. Bondjers, G., and O. Wiklund, Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system,, Atherosclerosis, 123 (1996), 43. Google Scholar

[2]

C. A. Cobbold, J. A. Sherratt, and S. J. R. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach,, Bull. Math. Biol., 64 (2002), 65. Google Scholar

[3]

M. A. Creager, M. A. and Braunwald, E. eds., "Atlas of Vascular Disease,", $2^{nd}$ edition, (2003). Google Scholar

[4]

A. Daugherty, and D. L. Rateri, Pathogenesis of atherosclerotic lesions,, Cardiol. Rev., 1 (1993), 157. Google Scholar

[5]

J. Fan, and T. Watanabe, Inflammatory reactions in the pathogenesis of atherosclerosis,, JAT, 10 (2003), 63. Google Scholar

[6]

R. Franssen, A. W. M. Schimmel, S. I. van Leuven, S. C. S. Wolfkamp, E. S.G. Stroes, and G. M. Dallinga-Thie, In vivo inflammation does not impair ABCA1-mediated cholesterol efflux capacity of HDL,, Cholesterol, 2012 (2012), 1. Google Scholar

[7]

J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoproteins, producing massive cholesterol deposition,, Proc. Natl. Acad. Sci. USA, 76 (1977), 333. Google Scholar

[8]

J. Hubbard and B. West, "Differential Equations: A Dynamical Systems Approach,", Springer-Verlag, (1991). Google Scholar

[9]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, A mathematical model of atherogenesis as an inflammatory response,, Math. Med. and Biol., 22 (2005), 305. Google Scholar

[10]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, Stability analysis of a model of atherogenesis: An energy estimate approach,, J. of Comp. and Math. Meth. in Med., 9 (2008), 121. Google Scholar

[11]

A. I. Ibragimov, L. R. Ritter, and J. R Walton, Stability analysis of a reaction-diffusion system modeling atherogenesis,, SIAM J. Appl. Math., 70 (2010), 2150. Google Scholar

[12]

K. U. Ingold, V. W. Bowry, R. Stocker, and C. Walling, Autoxidation and antioxidation by $\alpha$-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein,, Proc. Natl. Acad. Sci. USA, 90 (1993), 45. Google Scholar

[13]

I. Jailal, G. L. Vega, S. M. and Grundy, Physologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein,, Atherosclerosis, 82 (1990), 185. Google Scholar

[14]

W. Khovidhunkit, M. S. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser, K. R. Feingold, and C. Grunfeld, Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host,, Journal of Lipid Research, 45 (2004), 1169. Google Scholar

[15]

P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis,, Circulation, 105 (2002). Google Scholar

[16]

L. B. Neilsen, Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis,, Atherosclerosis, 123 (1996), 1. Google Scholar

[17]

J. Neuzil, S. R. Thomas, and R. Stocker, Requirement for, promotion, or inhibition by $\alpha$-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation,, Free Radic. Biol. Med., 22 (1997), 57. Google Scholar

[18]

J. E. Packer, T. F. Slater, and R. L. Willson, Direct observation of a free radical interaction between vitamin E and vitamin C,, Nature, 278 (1979), 737. Google Scholar

[19]

E. A. Podrez, E. Poliakov, Z. Shen, R. Zhang, Y. Deng, M. Sun, P. J. Finton, L. Shan, B. Gugiu, P. L. Fox, H. F. Hoff, R. G. Salomon, and S. L. Hazen, Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36,, J. Biol. Chem., 277 (2002), 38503. Google Scholar

[20]

Russell Ross, Cell biology of atherosclerosis,, Annu. Rev. Physiol., 57 (1995), 791. Google Scholar

[21]

Russell Ross, Atherosclerosis-An inflammatory disease,, N. Engl. J. Med., 340 (1999), 115. Google Scholar

[22]

D. c. Schwenke, and T. E. Carew, Initiation of atherosclerotic lesions in cholesterol fed rabbits. II Selective retention of LDL vs. Selective increases in LDL permeability in susceptible sites of arteries,, Arteriosclerosis, 9 (1989), 908. Google Scholar

[23]

H. C. Stary, B. Chandler, S. Glagov, J. R. Guyton, W. Insull Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Special report.,, Arterioscler. Thromb., 14 (1994), 840. Google Scholar

[24]

D. Steinberg, Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,, Nat. Med., 8 (2002), 1211. Google Scholar

[25]

A. R. Tall, Plasma high density lipoproteins: metabolism and relationship to atherogenesis,, J. Clin. Invest., 86 (1990), 379. Google Scholar

[26]

N. Wang, D. Lan, W. Chen, F. Matsuura, and A. Tall, ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins,, Proc. Natl. Acad. Sci. USA, 101 (2004), 9774. Google Scholar

show all references

References:
[1]

T. Bjornheden, A. Babiy, G. Bondjers, G., and O. Wiklund, Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system,, Atherosclerosis, 123 (1996), 43. Google Scholar

[2]

C. A. Cobbold, J. A. Sherratt, and S. J. R. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach,, Bull. Math. Biol., 64 (2002), 65. Google Scholar

[3]

M. A. Creager, M. A. and Braunwald, E. eds., "Atlas of Vascular Disease,", $2^{nd}$ edition, (2003). Google Scholar

[4]

A. Daugherty, and D. L. Rateri, Pathogenesis of atherosclerotic lesions,, Cardiol. Rev., 1 (1993), 157. Google Scholar

[5]

J. Fan, and T. Watanabe, Inflammatory reactions in the pathogenesis of atherosclerosis,, JAT, 10 (2003), 63. Google Scholar

[6]

R. Franssen, A. W. M. Schimmel, S. I. van Leuven, S. C. S. Wolfkamp, E. S.G. Stroes, and G. M. Dallinga-Thie, In vivo inflammation does not impair ABCA1-mediated cholesterol efflux capacity of HDL,, Cholesterol, 2012 (2012), 1. Google Scholar

[7]

J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoproteins, producing massive cholesterol deposition,, Proc. Natl. Acad. Sci. USA, 76 (1977), 333. Google Scholar

[8]

J. Hubbard and B. West, "Differential Equations: A Dynamical Systems Approach,", Springer-Verlag, (1991). Google Scholar

[9]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, A mathematical model of atherogenesis as an inflammatory response,, Math. Med. and Biol., 22 (2005), 305. Google Scholar

[10]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, Stability analysis of a model of atherogenesis: An energy estimate approach,, J. of Comp. and Math. Meth. in Med., 9 (2008), 121. Google Scholar

[11]

A. I. Ibragimov, L. R. Ritter, and J. R Walton, Stability analysis of a reaction-diffusion system modeling atherogenesis,, SIAM J. Appl. Math., 70 (2010), 2150. Google Scholar

[12]

K. U. Ingold, V. W. Bowry, R. Stocker, and C. Walling, Autoxidation and antioxidation by $\alpha$-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein,, Proc. Natl. Acad. Sci. USA, 90 (1993), 45. Google Scholar

[13]

I. Jailal, G. L. Vega, S. M. and Grundy, Physologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein,, Atherosclerosis, 82 (1990), 185. Google Scholar

[14]

W. Khovidhunkit, M. S. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser, K. R. Feingold, and C. Grunfeld, Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host,, Journal of Lipid Research, 45 (2004), 1169. Google Scholar

[15]

P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis,, Circulation, 105 (2002). Google Scholar

[16]

L. B. Neilsen, Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis,, Atherosclerosis, 123 (1996), 1. Google Scholar

[17]

J. Neuzil, S. R. Thomas, and R. Stocker, Requirement for, promotion, or inhibition by $\alpha$-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation,, Free Radic. Biol. Med., 22 (1997), 57. Google Scholar

[18]

J. E. Packer, T. F. Slater, and R. L. Willson, Direct observation of a free radical interaction between vitamin E and vitamin C,, Nature, 278 (1979), 737. Google Scholar

[19]

E. A. Podrez, E. Poliakov, Z. Shen, R. Zhang, Y. Deng, M. Sun, P. J. Finton, L. Shan, B. Gugiu, P. L. Fox, H. F. Hoff, R. G. Salomon, and S. L. Hazen, Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36,, J. Biol. Chem., 277 (2002), 38503. Google Scholar

[20]

Russell Ross, Cell biology of atherosclerosis,, Annu. Rev. Physiol., 57 (1995), 791. Google Scholar

[21]

Russell Ross, Atherosclerosis-An inflammatory disease,, N. Engl. J. Med., 340 (1999), 115. Google Scholar

[22]

D. c. Schwenke, and T. E. Carew, Initiation of atherosclerotic lesions in cholesterol fed rabbits. II Selective retention of LDL vs. Selective increases in LDL permeability in susceptible sites of arteries,, Arteriosclerosis, 9 (1989), 908. Google Scholar

[23]

H. C. Stary, B. Chandler, S. Glagov, J. R. Guyton, W. Insull Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Special report.,, Arterioscler. Thromb., 14 (1994), 840. Google Scholar

[24]

D. Steinberg, Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,, Nat. Med., 8 (2002), 1211. Google Scholar

[25]

A. R. Tall, Plasma high density lipoproteins: metabolism and relationship to atherogenesis,, J. Clin. Invest., 86 (1990), 379. Google Scholar

[26]

N. Wang, D. Lan, W. Chen, F. Matsuura, and A. Tall, ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins,, Proc. Natl. Acad. Sci. USA, 101 (2004), 9774. Google Scholar

[1]

Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 613-633. doi: 10.3934/dcds.2014.34.613

[2]

Christos Sourdis. Analysis of an irregular boundary layer behavior for the steady state flow of a Boussinesq fluid. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1039-1059. doi: 10.3934/dcds.2017043

[3]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[4]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[5]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[6]

Ahmed M. K. Tarabia. Transient and steady state analysis of an M/M/1 queue with balking, catastrophes, server failures and repairs. Journal of Industrial & Management Optimization, 2011, 7 (4) : 811-823. doi: 10.3934/jimo.2011.7.811

[7]

Sze-Bi Hsu, Feng-Bin Wang. On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1479-1501. doi: 10.3934/cpaa.2011.10.1479

[8]

Zhenzhen Zheng, Ching-Shan Chou, Tau-Mu Yi, Qing Nie. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1135-1168. doi: 10.3934/mbe.2011.8.1135

[9]

Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1373-1410. doi: 10.3934/dcdsb.2014.19.1373

[10]

Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159

[11]

Takashi Suzuki, Shuji Yoshikawa. Stability of the steady state for multi-dimensional thermoelastic systems of shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 209-217. doi: 10.3934/dcdss.2012.5.209

[12]

Ken Shirakawa. Stability for steady-state patterns in phase field dynamics associated with total variation energies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1215-1236. doi: 10.3934/dcds.2006.15.1215

[13]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[14]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[15]

J. A. López Molina, M. J. Rivera, E. Berjano. Electrical-thermal analytical modeling of monopolar RF thermal ablation of biological tissues: determining the circumstances under which tissue temperature reaches a steady state. Mathematical Biosciences & Engineering, 2016, 13 (2) : 281-301. doi: 10.3934/mbe.2015003

[16]

Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117

[17]

Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasi-steady state. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 945-961. doi: 10.3934/dcdsb.2011.16.945

[18]

Orazio Muscato, Wolfgang Wagner, Vincenza Di Stefano. Properties of the steady state distribution of electrons in semiconductors. Kinetic & Related Models, 2011, 4 (3) : 809-829. doi: 10.3934/krm.2011.4.809

[19]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[20]

Jing Liu, Xiaodong Liu, Sining Zheng, Yanping Lin. Positive steady state of a food chain system with diffusion. Conference Publications, 2007, 2007 (Special) : 667-676. doi: 10.3934/proc.2007.2007.667

 Impact Factor: 

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]