2015, 2015(special): 29-37. doi: 10.3934/proc.2015.0029

A nonlinear generalization of the Camassa-Holm equation with peakon solutions

1. 

Department of Mathematics and Statistics, Brock University, St. Catharines, Ontario, L2S 3A1, Canada, Canada

2. 

Department of Mathematics, Faculty of Sciences, University of Cádiz, Puerto Real, Cádiz 11510, Spain, Spain

Received  October 2014 Revised  March 2015 Published  November 2015

A nonlinearly generalized Camassa-Holm equation, depending an arbitrary nonlinearity power $p \neq 0$, is considered. This equation reduces to the Camassa-Holm equation when $p=1$ and shares one of the Hamiltonian structures of the Camassa-Holm equation. Two main results are obtained. A classification of point symmetries is presented and a peakon solution is derived, for all powers $p \neq 0$.
Citation: Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029
References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137. Google Scholar

[2]

S. C. Anco, P. L. da Silva, I. L. Freire, A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations,, Lett. Math. Phys., 32 (1994), 137. Google Scholar

[3]

G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002). Google Scholar

[4]

R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. Google Scholar

[6]

C. S. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models,, J. Dyn. Diff. Eqs., 16 (2004), 167. Google Scholar

[7]

A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations,, Comp. Phys. Comm., 176 (2007), 48. Google Scholar

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach,, Ans. Inst. Fourier (Grenoble), 50 (2000), 321. Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. Google Scholar

[10]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 33 (2000), 75. Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 303. Google Scholar

[12]

A. Degasperis, D. D. Holm, A. N. W. Hone, A new integrable equation with peakon solutions,, Theor. Math. Phys. 133 (2002), 133 (2002), 1463. Google Scholar

[13]

M. Fisher and J. Schiff, The Camassa Holm equation: conserved quantities and the initial value problem,, Phys. Lett. A, 259 (1999), 371. Google Scholar

[14]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47. Google Scholar

[15]

D. D. Holm, A. N. W. Hone, A class of equations with peakon and pulson solutions,, J. Nonlinear Math. Phys., 12 (2005), 380. Google Scholar

[16]

A. N. W. Hone and J. P. Wang, Prolongation algebras and Hamiltonian operators for peakon equations,, Inverse Problems, 19 (2003), 129. Google Scholar

[17]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1993). Google Scholar

show all references

References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137. Google Scholar

[2]

S. C. Anco, P. L. da Silva, I. L. Freire, A family of wave-breaking equations generalizing the Camassa-Holm and Novikov equations,, Lett. Math. Phys., 32 (1994), 137. Google Scholar

[3]

G. W. Bluman and S. C. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002). Google Scholar

[4]

R. Camassa, D. D. Holm and J. M. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. Google Scholar

[6]

C. S. Cao, D. D. Holm and E. S. Titi, Traveling wave solutions for a class of one-dimensional nonlinear shallow water wave models,, J. Dyn. Diff. Eqs., 16 (2004), 167. Google Scholar

[7]

A. F. Cheviakov, GeM software package for computation of symmetries and conservation laws of differential equations,, Comp. Phys. Comm., 176 (2007), 48. Google Scholar

[8]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach,, Ans. Inst. Fourier (Grenoble), 50 (2000), 321. Google Scholar

[9]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. Google Scholar

[10]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 33 (2000), 75. Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa, 26 (1998), 303. Google Scholar

[12]

A. Degasperis, D. D. Holm, A. N. W. Hone, A new integrable equation with peakon solutions,, Theor. Math. Phys. 133 (2002), 133 (2002), 1463. Google Scholar

[13]

M. Fisher and J. Schiff, The Camassa Holm equation: conserved quantities and the initial value problem,, Phys. Lett. A, 259 (1999), 371. Google Scholar

[14]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47. Google Scholar

[15]

D. D. Holm, A. N. W. Hone, A class of equations with peakon and pulson solutions,, J. Nonlinear Math. Phys., 12 (2005), 380. Google Scholar

[16]

A. N. W. Hone and J. P. Wang, Prolongation algebras and Hamiltonian operators for peakon equations,, Inverse Problems, 19 (2003), 129. Google Scholar

[17]

P. J. Olver, Applications of Lie Groups to Differential Equations,, Springer-Verlag, (1993). Google Scholar

[1]

Marianna Euler, Norbert Euler. Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1421-1430. doi: 10.3934/cpaa.2012.11.1421

[2]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[3]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[4]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[5]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[6]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

[7]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[8]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[9]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[10]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[11]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[12]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[13]

María Santos Bruzón, Tamara María Garrido. Symmetries and conservation laws of a KdV6 equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 631-641. doi: 10.3934/dcdss.2018038

[14]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[15]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[16]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[17]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[18]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[19]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[20]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

 Impact Factor: 

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

[Back to Top]