2015, 2015(special): 428-435. doi: 10.3934/proc.2015.0428

A general approach to identification problems and applications to partial differential equations

1. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

Received  August 2014 Revised  May 2015 Published  November 2015

An abstract method to deal with identification problems related to evolution equations with multivalued linear operators (or linear relations) is described. Some applications to partial differential equations are presented.
Citation: Angelo Favini. A general approach to identification problems and applications to partial differential equations. Conference Publications, 2015, 2015 (special) : 428-435. doi: 10.3934/proc.2015.0428
References:
[1]

Artide ID 279454, 37 pages, 2013.  Google Scholar

[2]

A. Favaron, A. Favini and H. Tanabe, Perturbation Methods for inverse Problems in degenerate differential Equations,, to appear., ().   Google Scholar

[3]

Mathematics Invited Contributors at the Seventh Congress of Romanian Mathematicians, Brasov 2011 (eds. L. Beznea, V. Brinzanescu, M. Iosifescu, G. Marinoschi, R. Purice, and D. Timotin), Publishing house of the Romanian Academy (2013), 88-96. Google Scholar

[4]

New Prospects in Direct, Inverse and Control Problems for Evolution Equations, (eds. A. Favini, G. Fragnelli, and R. M. Mininni), Springer INdAM Series 10, Springer, Cham, Heidelberg, New York, Dordrecht, London, (2014), 107-119. Google Scholar

[5]

A. Favini, A. Lorenzi and H. Tanabe, Degenerate Integrodifferential Equations of Parabolyc Type with Robin boundary conditions: $L^p$-theory,, preprint., ().   Google Scholar

[6]

Electronic J. Diff. Eqs, (2015), 1-22. Google Scholar

[7]

Electronic J. Diff. Eqs, (2012), 1-34.  Google Scholar

[8]

Applicable Analysis 91(78), (2012), 1451-1468. Google Scholar

[9]

Proceedings of Seminar on Partial Differential Equations in Osaka, Osaka University, August 20-24, 2012, (2013), 89-100. Google Scholar

[10]

Monographs and Textbooks in Pure and Applied Mathematics 215, M. Dekker Inc, New York, (1999).  Google Scholar

[11]

Translations of Mathematical Monography AMS, (1972).  Google Scholar

[12]

Birkhäuser Basol (1995).  Google Scholar

show all references

References:
[1]

Artide ID 279454, 37 pages, 2013.  Google Scholar

[2]

A. Favaron, A. Favini and H. Tanabe, Perturbation Methods for inverse Problems in degenerate differential Equations,, to appear., ().   Google Scholar

[3]

Mathematics Invited Contributors at the Seventh Congress of Romanian Mathematicians, Brasov 2011 (eds. L. Beznea, V. Brinzanescu, M. Iosifescu, G. Marinoschi, R. Purice, and D. Timotin), Publishing house of the Romanian Academy (2013), 88-96. Google Scholar

[4]

New Prospects in Direct, Inverse and Control Problems for Evolution Equations, (eds. A. Favini, G. Fragnelli, and R. M. Mininni), Springer INdAM Series 10, Springer, Cham, Heidelberg, New York, Dordrecht, London, (2014), 107-119. Google Scholar

[5]

A. Favini, A. Lorenzi and H. Tanabe, Degenerate Integrodifferential Equations of Parabolyc Type with Robin boundary conditions: $L^p$-theory,, preprint., ().   Google Scholar

[6]

Electronic J. Diff. Eqs, (2015), 1-22. Google Scholar

[7]

Electronic J. Diff. Eqs, (2012), 1-34.  Google Scholar

[8]

Applicable Analysis 91(78), (2012), 1451-1468. Google Scholar

[9]

Proceedings of Seminar on Partial Differential Equations in Osaka, Osaka University, August 20-24, 2012, (2013), 89-100. Google Scholar

[10]

Monographs and Textbooks in Pure and Applied Mathematics 215, M. Dekker Inc, New York, (1999).  Google Scholar

[11]

Translations of Mathematical Monography AMS, (1972).  Google Scholar

[12]

Birkhäuser Basol (1995).  Google Scholar

[1]

Fabio Sperotto Bemfica, Marcelo Mendes Disconzi, Casey Rodriguez, Yuanzhen Shao. Local existence and uniqueness in Sobolev spaces for first-order conformal causal relativistic viscous hydrodynamics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021069

[2]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[3]

Tôn Việt Tạ. Strict solutions to stochastic semilinear evolution equations in M-type 2 Banach spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021050

[4]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[5]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, 2021, 15 (3) : 415-443. doi: 10.3934/ipi.2020074

[6]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[7]

Lucas C. F. Ferreira, Jhean E. Pérez-López, Élder J. Villamizar-Roa. On the product in Besov-Lorentz-Morrey spaces and existence of solutions for the stationary Boussinesq equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2423-2439. doi: 10.3934/cpaa.2018115

[8]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[9]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[10]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[11]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[12]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[13]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[14]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[15]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[16]

Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024

[17]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[18]

Meiqiao Ai, Zhimin Zhang, Wenguang Yu. First passage problems of refracted jump diffusion processes and their applications in valuing equity-linked death benefits. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021039

[19]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[20]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

 Impact Factor: 

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]