
Previous Article
Singular limit of AllenCahn equation with constraint and its Lagrange multiplier
 PROC Home
 This Issue

Next Article
Existence of positive solutions of a superlinear boundary value problem with indefinite weight
A general approach to identification problems and applications to partial differential equations
1.  Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna 
References:
[1] 
A. Favaron and A. Favini, On the behavior of singular semigroups in intermediatic and interpolation spaces and its applications to maximal regularity for degenerate integrodifferential equations, Abstract and Applied Analysis,, Artide ID 279454, (2794). Google Scholar 
[2] 
A. Favaron, A. Favini and H. Tanabe, Perturbation Methods for inverse Problems in degenerate differential Equations,, to appear., (). Google Scholar 
[3] 
A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation Methods and Identification Problems for Degenerate Evolution Equations,, Mathematics Invited Contributors at the Seventh Congress of Romanian Mathematicians, (2013), 88. Google Scholar 
[4] 
A. Favini, A. Lorenzi and H. Tanabe, A general Approach to Identification Problems,, New Prospects in Direct, (2014), 107. Google Scholar 
[5] 
A. Favini, A. Lorenzi and H. Tanabe, Degenerate Integrodifferential Equations of Parabolyc Type with Robin boundary conditions: $L^p$theory,, preprint., (). Google Scholar 
[6] 
A. Favini, A. Lorenzi and H. Tanabe, Direct and Inverse Degenerate Parabolic Differential Equations with Multivalued Operators,, Electronic J. Diff. Eqs, (2015), 1. Google Scholar 
[7] 
A. Favini, A. Lorenzi and H. Tanabe, Direct and Inverse Problems for Systems of Singular Differential Boundary Value Problems,, Electronic J. Diff. Eqs, (2012), 1. Google Scholar 
[8] 
A. Favini and G. Marinoschi, Identification for degenerate problems of hyperbolic type,, Applicable Analysis 91(78), 91 (2012), 1451. Google Scholar 
[9] 
A. Favini and H. Tanabe, Degenerate Differential Equations of Parabolic Type and Inverse Problems,, Proceedings of Seminar on Partial Differential Equations in Osaka, (2013), 20. Google Scholar 
[10] 
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Monographs and Textbooks in Pure and Applied Mathematics 215, (1999). Google Scholar 
[11] 
S. G. Kreĭn, Differential Equations in Banach Spaces,, Translations of Mathematical Monography AMS, (1972). Google Scholar 
[12] 
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser Basol (1995)., (1995). Google Scholar 
show all references
References:
[1] 
A. Favaron and A. Favini, On the behavior of singular semigroups in intermediatic and interpolation spaces and its applications to maximal regularity for degenerate integrodifferential equations, Abstract and Applied Analysis,, Artide ID 279454, (2794). Google Scholar 
[2] 
A. Favaron, A. Favini and H. Tanabe, Perturbation Methods for inverse Problems in degenerate differential Equations,, to appear., (). Google Scholar 
[3] 
A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation Methods and Identification Problems for Degenerate Evolution Equations,, Mathematics Invited Contributors at the Seventh Congress of Romanian Mathematicians, (2013), 88. Google Scholar 
[4] 
A. Favini, A. Lorenzi and H. Tanabe, A general Approach to Identification Problems,, New Prospects in Direct, (2014), 107. Google Scholar 
[5] 
A. Favini, A. Lorenzi and H. Tanabe, Degenerate Integrodifferential Equations of Parabolyc Type with Robin boundary conditions: $L^p$theory,, preprint., (). Google Scholar 
[6] 
A. Favini, A. Lorenzi and H. Tanabe, Direct and Inverse Degenerate Parabolic Differential Equations with Multivalued Operators,, Electronic J. Diff. Eqs, (2015), 1. Google Scholar 
[7] 
A. Favini, A. Lorenzi and H. Tanabe, Direct and Inverse Problems for Systems of Singular Differential Boundary Value Problems,, Electronic J. Diff. Eqs, (2012), 1. Google Scholar 
[8] 
A. Favini and G. Marinoschi, Identification for degenerate problems of hyperbolic type,, Applicable Analysis 91(78), 91 (2012), 1451. Google Scholar 
[9] 
A. Favini and H. Tanabe, Degenerate Differential Equations of Parabolic Type and Inverse Problems,, Proceedings of Seminar on Partial Differential Equations in Osaka, (2013), 20. Google Scholar 
[10] 
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Monographs and Textbooks in Pure and Applied Mathematics 215, (1999). Google Scholar 
[11] 
S. G. Kreĭn, Differential Equations in Banach Spaces,, Translations of Mathematical Monography AMS, (1972). Google Scholar 
[12] 
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser Basol (1995)., (1995). Google Scholar 
[1] 
Mohammed Al Horani, Angelo Favini. Firstorder inverse evolution equations. Evolution Equations & Control Theory, 2014, 3 (3) : 355361. doi: 10.3934/eect.2014.3.355 
[2] 
Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differentialoperator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 595614. doi: 10.3934/dcdss.2011.4.595 
[3] 
Tan BuiThanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems & Imaging, 2013, 7 (4) : 11391155. doi: 10.3934/ipi.2013.7.1139 
[4] 
Shiyun Wang, YongJin Liu, Yong Jiang. A majorized penalty approach to inverse linear second order cone programming problems. Journal of Industrial & Management Optimization, 2014, 10 (3) : 965976. doi: 10.3934/jimo.2014.10.965 
[5] 
Y. Gong, X. Xiang. A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. Journal of Industrial & Management Optimization, 2009, 5 (1) : 110. doi: 10.3934/jimo.2009.5.1 
[6] 
Davide Guidetti. Convergence to a stationary state of solutions to inverse problems of parabolic type. Discrete & Continuous Dynamical Systems  S, 2013, 6 (3) : 711722. doi: 10.3934/dcdss.2013.6.711 
[7] 
Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integrodifferential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 1741. doi: 10.3934/ipi.2009.3.17 
[8] 
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793813. doi: 10.3934/ipi.2011.5.793 
[9] 
Sergiy Zhuk. Inverse problems for linear illposed differentialalgebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 14671476. doi: 10.3934/proc.2011.2011.1467 
[10] 
Mohammed Al Horani, Angelo Favini. Inverse problems for singular differentialoperator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems  B, 2014, 19 (7) : 21592168. doi: 10.3934/dcdsb.2014.19.2159 
[11] 
Gabriella Di Blasio, Alfredo Lorenzi. Direct and inverse problems in agestructured population diffusion. Discrete & Continuous Dynamical Systems  S, 2011, 4 (3) : 539563. doi: 10.3934/dcdss.2011.4.539 
[12] 
Sari Lasanen. NonGaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems & Imaging, 2012, 6 (2) : 267287. doi: 10.3934/ipi.2012.6.267 
[13] 
Sari Lasanen. NonGaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems & Imaging, 2012, 6 (2) : 215266. doi: 10.3934/ipi.2012.6.215 
[14] 
Fatihcan M. Atay, Lavinia Roncoroni. Lumpability of linear evolution Equations in Banach spaces. Evolution Equations & Control Theory, 2017, 6 (1) : 1534. doi: 10.3934/eect.2017002 
[15] 
Anna Doubova, Enrique FernándezCara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371393. doi: 10.3934/ipi.2015.9.371 
[16] 
Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems & Imaging, 2015, 9 (1) : 163188. doi: 10.3934/ipi.2015.9.163 
[17] 
Mehdi Badra, Fabien Caubet, Jérémi Dardé. Stability estimates for NavierStokes equations and application to inverse problems. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 23792407. doi: 10.3934/dcdsb.2016052 
[18] 
Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operatorcoefficients. Discrete & Continuous Dynamical Systems  S, 2016, 9 (3) : 737744. doi: 10.3934/dcdss.2016025 
[19] 
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229245. doi: 10.3934/ipi.2007.1.229 
[20] 
Peter Poláčik. On uniqueness of positive entire solutions and other properties of linear parabolic equations. Discrete & Continuous Dynamical Systems  A, 2005, 12 (1) : 1326. doi: 10.3934/dcds.2005.12.13 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]