    2015, 2015(special): 446-454. doi: 10.3934/proc.2015.0446

## High order periodic impulsive problems

 1 College of the Bahamas, School of Mathematics, Physics and Technologies, Department of Mathematics, Oakes Field Campus, Nassau 2 School of Sciences and Technology. Department of Mathematics, University of Évora, Research Center in Mathematics and Applications of the University of Évora, (CIMA-UE), Rua Romão Ramalho, 59, 7000-671 Évora

Received  September 2014 Revised  January 2015 Published  November 2015

The theory of impulsive problem is experiencing a rapid development in the last few years. Mainly because they have been used to describe some phenomena, arising from different disciplines like physics or biology, subject to instantaneous change at some time instants called moments. Second order periodic impulsive problems were studied to some extent, however very few papers were dedicated to the study of third and higher order impulsive problems.
The high order impulsive problem considered is composed by the fully nonlinear equation \begin{equation*} u^{\left( n\right) }\left( x\right) =f\left( x,u\left( x\right) ,u^{\prime }\left( x\right) ,...,u^{\left( n-1\right) }\left( x\right) \right) \end{equation*} for a. e. $x\in I:=\left[ 0,1\right] ~\backslash ~\left\{ x_{1},...,x_{m}\right\}$ where $f:\left[ 0,1\right] \times \mathbb{R} ^{n}\rightarrow \mathbb{R}$ is $L^{1}$-Carathéodory function, along with the periodic boundary conditions \begin{equation*} u^{\left( i\right) }\left( 0\right) =u^{\left( i\right) }\left( 1\right) ,         i=0,...,n-1, \end{equation*} and the impulsive conditions \begin{equation*} \begin{array}{c} u^{\left( i\right) }\left( x_{j}^{+}\right) =g_{j}^{i}\left( u\left( x_{j}\right) \right) ,        i=0,...,n-1, \end{array} \end{equation*} where $g_{j}^{i},$ for $j=1,...,m,$are given real valued functions satisfying some adequate conditions, and $x_{j}\in \left( 0,1\right) ,$ such that $0 = x_0 < x_1 <...< x_m < x_{m+1}=1.$
The arguments applied make use of the lower and upper solution method combined with an iterative technique, which is not necessarily monotone, together with classical results such as Lebesgue Dominated Convergence Theorem, Ascoli-Arzela Theorem and fixed point theory.
Citation: João Fialho, Feliz Minhós. High order periodic impulsive problems. Conference Publications, 2015, 2015 (special) : 446-454. doi: 10.3934/proc.2015.0446
##### References:
  Appl. Math. Comput., 206, (2008) 728-737. Google Scholar  Nonlinear Anal., 67, (2007) 827-841. Google Scholar  Appl. Math. Comput., 165, (2005) 433-446. Google Scholar  Differential Equations and Dynamical Systems, 2013 Google Scholar  J. Math. Anal. Appl., 272, (2002) 67-78. Google Scholar  J. Comput. Appl. Math., 202, (2007) 498-510. Google Scholar  Comput. Math. Appl., 55, (2008) 2094-2107 Google Scholar  Nonlinear Anal., 59, (2004) 133-146 Google Scholar  J. Comput. Appl. Math., 234, (2010) 3261-3267. Google Scholar  2011 International Symposium on IT in Medicine and Education (ITME), 2 (2011) 424 - 427. Google Scholar  Intelligent System Design and Engineering Application (ISDEA), (2012) 452 - 455. Google Scholar

show all references

##### References:
  Appl. Math. Comput., 206, (2008) 728-737. Google Scholar  Nonlinear Anal., 67, (2007) 827-841. Google Scholar  Appl. Math. Comput., 165, (2005) 433-446. Google Scholar  Differential Equations and Dynamical Systems, 2013 Google Scholar  J. Math. Anal. Appl., 272, (2002) 67-78. Google Scholar  J. Comput. Appl. Math., 202, (2007) 498-510. Google Scholar  Comput. Math. Appl., 55, (2008) 2094-2107 Google Scholar  Nonlinear Anal., 59, (2004) 133-146 Google Scholar  J. Comput. Appl. Math., 234, (2010) 3261-3267. Google Scholar  2011 International Symposium on IT in Medicine and Education (ITME), 2 (2011) 424 - 427. Google Scholar  Intelligent System Design and Engineering Application (ISDEA), (2012) 452 - 455. Google Scholar
  Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094  M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072  Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3683-3708. doi: 10.3934/dcds.2021012  Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398  Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533  Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399  Claudianor O. Alves, César T. Ledesma. Multiplicity of solutions for a class of fractional elliptic problems with critical exponential growth and nonlocal Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021058  A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044  Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027  Muhammad Aslam Noor, Khalida Inayat Noor. Properties of higher order preinvex functions. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 431-441. doi: 10.3934/naco.2020035  Matheus C. Bortolan, José Manuel Uzal. Upper and weak-lower semicontinuity of pullback attractors to impulsive evolution processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3667-3692. doi: 10.3934/dcdsb.2020252  Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827  Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912  Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L∞ tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042  Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597  Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277  Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184  Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028  Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136  Pengyu Chen. Periodic solutions to non-autonomous evolution equations with multi-delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2921-2939. doi: 10.3934/dcdsb.2020211

Impact Factor:

## Metrics

• PDF downloads (100)
• HTML views (0)
• Cited by (0)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]