2015, 2015(special): 455-463. doi: 10.3934/proc.2015.0455

Well-posedness for a class of nonlinear degenerate parabolic equations

1. 

Post Doc Istituto Nazionale di Alta Matematica (INdAM) "F. Severi", Dipartimento di Matematica, Università di Roma "Tor Vergata", I-00161 Roma, Italy

Received  September 2014 Revised  August 2015 Published  November 2015

In this paper we obtain well-posedness for a class of semilinear weakly degenerate reaction-diffusion systems with Robin boundary conditions. This result is obtained through a Gagliardo-Nirenberg interpolation inequality and some embedding results for weighted Sobolev spaces.
Citation: Giuseppe Floridia. Well-posedness for a class of nonlinear degenerate parabolic equations. Conference Publications, 2015, 2015 (special) : 455-463. doi: 10.3934/proc.2015.0455
References:
[1]

A. Bensoussan, G. Da Prato, G. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems,, 1, 1 (1992).

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer-Universitext, (2010).

[3]

P. Cannarsa and G. Floridia, Approximate controllability for linear degenerate parabolic problems with bilinear control,, Proc. Evolution Equations and Materials with Memory 2010 (eds. D. Andreucci, (2011), 19.

[4]

P. Cannarsa and G. Floridia, Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions,, Communications in Applied and Industrial Mathematics, 2 (2011), 1. doi: 10.1685/journal.caim.376.

[5]

P. Cannarsa and A. Y. Khapalov, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1293.

[6]

E. DiBenedetto, Degenerate Parabolic Equations,, Springer-Verlag, (1993).

[7]

G. Floridia, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control,, J. Differential Equations, 257 (2014), 3382. doi: 10.1016/j.jde.2014.06.016.

[8]

G. Floridia, Approximate Multiplicative Controllability for Degenerate Parabolic Problems and Regularity Properties of Elliptic and Parabolic Systems,, Ph.D thesis, (2011).

[9]

G. Floridia, Controllability for nonlinear degenerate parabolic problems with Robin boundary conditions,, in preparation., ().

[10]

G. Floridia and M. A. Ragusa, Interpolation inequalities for weak solutions of nonlinear parabolic systems,, J. Inequal. Appl., 42 (2011), 1. doi: 10.1186/1029-242X-2011-42.

[11]

G. Floridia and M. A. Ragusa, Differentiabilty and partial Hölder continuity of solutions of nonlinear elliptic systems,, J. Convex Anal., 19 (2012), 63.

show all references

References:
[1]

A. Bensoussan, G. Da Prato, G. Delfour and S. K. Mitter, Representation and Control of Infinite Dimensional Systems,, 1, 1 (1992).

[2]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer-Universitext, (2010).

[3]

P. Cannarsa and G. Floridia, Approximate controllability for linear degenerate parabolic problems with bilinear control,, Proc. Evolution Equations and Materials with Memory 2010 (eds. D. Andreucci, (2011), 19.

[4]

P. Cannarsa and G. Floridia, Approximate multiplicative controllability for degenerate parabolic problems with Robin boundary conditions,, Communications in Applied and Industrial Mathematics, 2 (2011), 1. doi: 10.1685/journal.caim.376.

[5]

P. Cannarsa and A. Y. Khapalov, Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1293.

[6]

E. DiBenedetto, Degenerate Parabolic Equations,, Springer-Verlag, (1993).

[7]

G. Floridia, Approximate controllability for nonlinear degenerate parabolic problems with bilinear control,, J. Differential Equations, 257 (2014), 3382. doi: 10.1016/j.jde.2014.06.016.

[8]

G. Floridia, Approximate Multiplicative Controllability for Degenerate Parabolic Problems and Regularity Properties of Elliptic and Parabolic Systems,, Ph.D thesis, (2011).

[9]

G. Floridia, Controllability for nonlinear degenerate parabolic problems with Robin boundary conditions,, in preparation., ().

[10]

G. Floridia and M. A. Ragusa, Interpolation inequalities for weak solutions of nonlinear parabolic systems,, J. Inequal. Appl., 42 (2011), 1. doi: 10.1186/1029-242X-2011-42.

[11]

G. Floridia and M. A. Ragusa, Differentiabilty and partial Hölder continuity of solutions of nonlinear elliptic systems,, J. Convex Anal., 19 (2012), 63.

[1]

Doyoon Kim, Hongjie Dong, Hong Zhang. Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4895-4914. doi: 10.3934/dcds.2016011

[2]

Ping Li, Pablo Raúl Stinga, José L. Torrea. On weighted mixed-norm Sobolev estimates for some basic parabolic equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 855-882. doi: 10.3934/cpaa.2017041

[3]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[4]

Xiaojun Li, Xiliang Li, Kening Lu. Random attractors for stochastic parabolic equations with additive noise in weighted spaces. Communications on Pure & Applied Analysis, 2018, 17 (3) : 729-749. doi: 10.3934/cpaa.2018038

[5]

Alberto Fiorenza, Anna Mercaldo, Jean Michel Rakotoson. Regularity and uniqueness results in grand Sobolev spaces for parabolic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 893-906. doi: 10.3934/dcds.2002.8.893

[6]

Chérif Amrouche, Mohamed Meslameni, Šárka Nečasová. Linearized Navier-Stokes equations in $\mathbb{R}^3$: An approach in weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 901-916. doi: 10.3934/dcdss.2014.7.901

[7]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[8]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[9]

Daniel Coutand, Steve Shkoller. Turbulent channel flow in weighted Sobolev spaces using the anisotropic Lagrangian averaged Navier-Stokes (LANS-$\alpha$) equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 1-23. doi: 10.3934/cpaa.2004.3.1

[10]

Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801

[11]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[12]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[13]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[14]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[15]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[16]

Takesi Fukao, Masahiro Kubo. Nonlinear degenerate parabolic equations for a thermohydraulic model. Conference Publications, 2007, 2007 (Special) : 399-408. doi: 10.3934/proc.2007.2007.399

[17]

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275

[18]

Jiebao Sun, Boying Wu, Jing Li, Dazhi Zhang. A class of doubly degenerate parabolic equations with periodic sources. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1199-1210. doi: 10.3934/dcdsb.2010.14.1199

[19]

A. V. Rezounenko. Inertial manifolds with delay for retarded semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 829-840. doi: 10.3934/dcds.2000.6.829

[20]

Jong-Shenq Guo, Satoshi Sasayama, Chi-Jen Wang. Blowup rate estimate for a system of semilinear parabolic equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 711-718. doi: 10.3934/cpaa.2009.8.711

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]