2015, 2015(special): 533-539. doi: 10.3934/proc.2015.0533

Existence of homoclinic solutions for second order difference equations with $p$-laplacian

1. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States

2. 

Equifax Inc., Alpharetta, GA 30005, United States

Received  August 2014 Revised  December 2014 Published  November 2015

Using the variational method and critical point theory, the authors study the existence of infinitely many homoclinic solutions to the difference equation \begin{equation*} -\Delta \big(a(k)\phi_p(\Delta u(k-1))\big)+b(k)\phi_p(u(k))=\lambda f(k,u(k))),\quad k\in\mathbb{Z}, \end{equation*} where $p>1$ is a real number, $\phi_p(t)=|t|^{p-2}t$ for $t\in\mathbb{R}$, $\lambda>0$ is a parameter, $a, b:\mathbb{Z}\to (0,\infty)$, and $f: \mathbb{Z}\times\mathbb{R}\to\mathbb{R}$ is continuous in the second variable. Related results in the literature are extended.
Citation: John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533
References:
[1]

P. Chen, X. Tang, and R. P. Agarwal, Existence of homoclinic solutions for $p(n)$-Laplacian Hamiltonian systems on Orlicz sequence spaces,, Math. Comput. Modelling, 55 (2012), 989.

[2]

M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory,, Springer, (2011).

[3]

J. R. Graef, L. Kong, and M. Wang, Infinitely many homoclinic solutions for second order difference equations with $p$-Laplacian,, Commun. Appl. Anal., ().

[4]

A. Iannizzotto and S. A. Tersian, Multiple homoclinic solutions for the discrete $p$-Laplacian via critical point theory,, J. Math. Anal. Appl., 403 (2013), 173.

[5]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations,, J. Funct. Anal., 225 (2005), 352.

[6]

M. Ma and Z. Guo, Homoclinic orbits for second order self-adjoint difference equations,, J. Math. Anal. Appl., 323 (2006), 513.

[7]

M. Mihăilescu, V. Rădulescu, and S. Tersian, Homoclinic solutions of difference equations with variable exponents,, Topol. Methods Nonlinear Anal., 38 (2011), 277.

[8]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Appl. Math. Sci., 74 (1989).

[9]

X. Tang and X. Lin, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, J. Math. Anal. Appl. 373 (2011), 373 (2011), 59.

[10]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. III,, Springer, (1985).

[11]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 4125.

show all references

References:
[1]

P. Chen, X. Tang, and R. P. Agarwal, Existence of homoclinic solutions for $p(n)$-Laplacian Hamiltonian systems on Orlicz sequence spaces,, Math. Comput. Modelling, 55 (2012), 989.

[2]

M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory,, Springer, (2011).

[3]

J. R. Graef, L. Kong, and M. Wang, Infinitely many homoclinic solutions for second order difference equations with $p$-Laplacian,, Commun. Appl. Anal., ().

[4]

A. Iannizzotto and S. A. Tersian, Multiple homoclinic solutions for the discrete $p$-Laplacian via critical point theory,, J. Math. Anal. Appl., 403 (2013), 173.

[5]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations,, J. Funct. Anal., 225 (2005), 352.

[6]

M. Ma and Z. Guo, Homoclinic orbits for second order self-adjoint difference equations,, J. Math. Anal. Appl., 323 (2006), 513.

[7]

M. Mihăilescu, V. Rădulescu, and S. Tersian, Homoclinic solutions of difference equations with variable exponents,, Topol. Methods Nonlinear Anal., 38 (2011), 277.

[8]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Appl. Math. Sci., 74 (1989).

[9]

X. Tang and X. Lin, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, J. Math. Anal. Appl. 373 (2011), 373 (2011), 59.

[10]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. III,, Springer, (1985).

[11]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 4125.

[1]

Ziheng Zhang, Rong Yuan. Infinitely many homoclinic solutions for damped vibration problems with subquadratic potentials. Communications on Pure & Applied Analysis, 2014, 13 (2) : 623-634. doi: 10.3934/cpaa.2014.13.623

[2]

Vera Ignatenko. Homoclinic and stable periodic solutions for differential delay equations from physiology. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3637-3661. doi: 10.3934/dcds.2018157

[3]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[4]

Samir Adly, Daniel Goeleven, Dumitru Motreanu. Periodic and homoclinic solutions for a class of unilateral problems. Discrete & Continuous Dynamical Systems - A, 1997, 3 (4) : 579-590. doi: 10.3934/dcds.1997.3.579

[5]

S. Secchi, C. A. Stuart. Global bifurcation of homoclinic solutions of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1493-1518. doi: 10.3934/dcds.2003.9.1493

[6]

Eleonora Catsigeras, Marcelo Cerminara, Heber Enrich. Simultaneous continuation of infinitely many sinks at homoclinic bifurcations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 693-736. doi: 10.3934/dcds.2011.29.693

[7]

Genghong Lin, Zhan Zhou. Homoclinic solutions of discrete $ \phi $-Laplacian equations with mixed nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1723-1747. doi: 10.3934/cpaa.2018082

[8]

Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068

[9]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[10]

Robert Stegliński. On homoclinic solutions for a second order difference equation with p-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 487-492. doi: 10.3934/dcdsb.2018033

[11]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[12]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[13]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

[14]

Dong-Lun Wu, Chun-Lei Tang, Xing-Ping Wu. Existence and nonuniqueness of homoclinic solutions for second-order Hamiltonian systems with mixed nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (1) : 57-72. doi: 10.3934/cpaa.2016.15.57

[15]

Michael Herrmann. Homoclinic standing waves in focusing DNLS equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 737-752. doi: 10.3934/dcds.2011.31.737

[16]

Liping Wang, Chunyi Zhao. Infinitely many solutions for nonlinear Schrödinger equations with slow decaying of potential. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1707-1731. doi: 10.3934/dcds.2017071

[17]

Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039

[18]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[19]

Tiphaine Jézéquel, Patrick Bernard, Eric Lombardi. Homoclinic orbits with many loops near a $0^2 i\omega$ resonant fixed point of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3153-3225. doi: 10.3934/dcds.2016.36.3153

[20]

Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275

 Impact Factor: 

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]