
Previous Article
Optimal control for an epidemic in populations of varying size
 PROC Home
 This Issue

Next Article
Modeling HIV: Determining the factors affecting the racial disparity in the prevalence of infected women
The Nehari solutions and asymmetric minimizers
1.  Daugavpils University, Parades str. 1, Daugavpils, LV 5400, Latvia 
2.  Insitute of Mathematics and Computer Science, University of Latvia, Rainis boul. 29, Riga, LV 1459, Latvia 
References:
show all references
References:
[1] 
Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436445. doi: 10.3934/proc.2015.0436 
[2] 
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411423. doi: 10.3934/cpaa.2003.2.411 
[3] 
ChanGyun Kim, YongHoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834843. doi: 10.3934/proc.2011.2011.834 
[4] 
Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 17651783. doi: 10.3934/cpaa.2018084 
[5] 
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615620. doi: 10.3934/proc.2015.0615 
[6] 
Feliz Minhós, A. I. Santos. Higher order twopoint boundary value problems with asymmetric growth. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 127137. doi: 10.3934/dcdss.2008.1.127 
[7] 
ShaoYuan Huang, ShinHwa Wang. On Sshaped bifurcation curves for a twopoint boundary value problem arising in a theory of thermal explosion. Discrete & Continuous Dynamical Systems  A, 2015, 35 (10) : 48394858. doi: 10.3934/dcds.2015.35.4839 
[8] 
John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundaryvalue problem. Conference Publications, 2009, 2009 (Special) : 276285. doi: 10.3934/proc.2009.2009.276 
[9] 
John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337344. doi: 10.3934/proc.2005.2005.337 
[10] 
Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259275. doi: 10.3934/nhm.2017011 
[11] 
John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291299. doi: 10.3934/proc.2013.2013.291 
[12] 
John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems  S, 2008, 1 (1) : 8997. doi: 10.3934/dcdss.2008.1.89 
[13] 
Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$biharmonic operator. Discrete & Continuous Dynamical Systems  S, 2012, 5 (4) : 741751. doi: 10.3934/dcdss.2012.5.741 
[14] 
Wenming Zou. Multiple solutions results for twopoint boundary value problem with resonance. Discrete & Continuous Dynamical Systems  A, 1998, 4 (3) : 485496. doi: 10.3934/dcds.1998.4.485 
[15] 
Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416423. doi: 10.3934/proc.2009.2009.416 
[16] 
John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269275. doi: 10.3934/proc.2009.2009.269 
[17] 
ByungHoon Hwang, SeokBae Yun. Stationary solutions to the boundary value problem for the relativistic BGK model in a slab. Kinetic & Related Models, 2019, 12 (4) : 749764. doi: 10.3934/krm.2019029 
[18] 
Julián LópezGómez, Marcela MolinaMeyer, Paul H. Rabinowitz. Global bifurcation diagrams of one node solutions in a class of degenerate boundary value problems. Discrete & Continuous Dynamical Systems  B, 2017, 22 (3) : 923946. doi: 10.3934/dcdsb.2017047 
[19] 
Xuemei Zhang, Meiqiang Feng. Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 21492171. doi: 10.3934/cpaa.2018103 
[20] 
Igor Kossowski, Katarzyna SzymańskaDębowska. Solutions to resonant boundary value problem with boundary conditions involving RiemannStieltjes integrals. Discrete & Continuous Dynamical Systems  B, 2018, 23 (1) : 275281. doi: 10.3934/dcdsb.2018019 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]