2015, 2015(special): 652-659. doi: 10.3934/proc.2015.0652

On global dynamics in a multi-dimensional discrete map

1. 

Department of Mathematics, Pennsylvania State University, PO Box PSU, Lehman, PA 18627, United States

Received  September 2014 Revised  October 2015 Published  November 2015

We derive preliminary results on global dynamics of the multi-dimensional discrete map $$ F:\; (x_1,x_2,\dots,x_{k-1},x_k)\mapsto (x_1+af(x_k),x_1,x_2,\dots,x_{k-1}) $$ where the continuous real-valued function $f$ is one-sided bounded and satisfying the negative feedback condition, $x\cdot f(x)<0, x\ne0$, $a$ is a positive parameter. We show the existence of a compact global attractor for map $F$, and derive a condition for the global attractivity of the zero fixed point.
Citation: Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652
References:
[1]

P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems,, Birkhäuser, (1980).

[2]

W. de Melo and S. van Strien, One-dimensional dynamics,, Ergebnisse der Mathematik und ihrer Grenzgebiete 3 [Results in Mathematics and Related Areas 3], 25 (1993).

[3]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems., Second Edition. Addison-Wesley Publ. Co., (1989).

[4]

O. Diekmann, S. van Gils, S. Verdyn Lunel, and H. O. Walther, Delay Equations: Complex, Functional, and Nonlinear Analysis,, Springer-Verlag, (1995).

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer Applied Mathematical Sciences, 99 (1993).

[6]

B. Hasselblatt and A. B. Katok, Handbook of dynamical systems,, North Holland, (2002).

[7]

A. F. Ivanov and S. I. Trofimchuk, On global dynamics in a periodic differential equation with deviating argument,, Applied Mathematics and Computation, 252 (2015), 446.

[8]

R. D. Nussbaum, Periodic solutions of nonlinear autonomous functional differential equations., Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., 730 (1978), 283.

[9]

A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of One-dimensional Maps,, Kluwer Academic Publishers, (1997).

show all references

References:
[1]

P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems,, Birkhäuser, (1980).

[2]

W. de Melo and S. van Strien, One-dimensional dynamics,, Ergebnisse der Mathematik und ihrer Grenzgebiete 3 [Results in Mathematics and Related Areas 3], 25 (1993).

[3]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems., Second Edition. Addison-Wesley Publ. Co., (1989).

[4]

O. Diekmann, S. van Gils, S. Verdyn Lunel, and H. O. Walther, Delay Equations: Complex, Functional, and Nonlinear Analysis,, Springer-Verlag, (1995).

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations,, Springer Applied Mathematical Sciences, 99 (1993).

[6]

B. Hasselblatt and A. B. Katok, Handbook of dynamical systems,, North Holland, (2002).

[7]

A. F. Ivanov and S. I. Trofimchuk, On global dynamics in a periodic differential equation with deviating argument,, Applied Mathematics and Computation, 252 (2015), 446.

[8]

R. D. Nussbaum, Periodic solutions of nonlinear autonomous functional differential equations., Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., 730 (1978), 283.

[9]

A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of One-dimensional Maps,, Kluwer Academic Publishers, (1997).

[1]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[2]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[3]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[4]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

[5]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[6]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[7]

Yangrong Li, Renhai Wang, Lianbing She. Backward controllability of pullback trajectory attractors with applications to multi-valued Jeffreys-Oldroyd equations. Evolution Equations & Control Theory, 2018, 7 (4) : 617-637. doi: 10.3934/eect.2018030

[8]

Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297

[9]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-21. doi: 10.3934/dcdsb.2019062

[10]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[11]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[12]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[13]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks & Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[14]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[15]

Tayel Dabbous. Identification for systems governed by nonlinear interval differential equations. Journal of Industrial & Management Optimization, 2012, 8 (3) : 765-780. doi: 10.3934/jimo.2012.8.765

[16]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[17]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[18]

Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092

[19]

Guolin Yu. Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 35-44. doi: 10.3934/naco.2016.6.35

[20]

Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753

 Impact Factor: 

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]