# American Institute of Mathematical Sciences

May  2017, 16(3): 1083-1102. doi: 10.3934/cpaa.2017052

## Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities

 SISSA -International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy

* Current address: Département de Mathématique, Université de Mons, Place du Parc 20, B-7000 Mons, Belgium.

Received  July 2016 Revised  January 2017 Published  February 2017

Fund Project: Work supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Progetto di Ricerca 2016: Problemi differenziali non lineari: esistenza, molteplicità e proprietà qualitative delle soluzioni".

We study the second order nonlinear differential equation
 $u'' + \sum\limits_{i = 1}^m {} {\alpha _i}{a_i}(x){g_i}(u) - \sum\limits_{j = 1}^{m + 1} {} {\beta _j}{b_j}(x){k_j}(u) = 0,{\rm{ }}$
where $\alpha_{i}, \beta_{j}>0$, $a_{i}(x), b_{j}(x)$ are non-negative Lebesgue integrable functions defined in $\mathopen{[}0, L\mathclose{]}$, and the nonlinearities $g_{i}(s), k_{j}(s)$ are continuous, positive and satisfy suitable growth conditions, as to cover the classical superlinear equation $u"+a(x)u.{p} = 0$, with $p>1$.When the positive parameters $\beta_{j}$ are sufficiently large, we prove the existence of at least $2.{m}-1$positive solutions for the Sturm-Liouville boundary value problems associated with the equation.The proof is based on the Leray-Schauder topological degree for locally compact operators on open and possibly unbounded sets.Finally, we deal with radially symmetric positive solutions for the Dirichlet problems associated with elliptic PDEs.
Citation: Guglielmo Feltrin. Multiple positive solutions of a sturm-liouville boundary value problem with conflicting nonlinearities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1083-1102. doi: 10.3934/cpaa.2017052
##### References:
 [1] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.  doi: 10.1006/jfan.1996.0125.  Google Scholar [2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave, convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar [3] D. L. T. Anderson, Stability of time-dependent particlelike solutions in nonlinear field theories. Ⅱ, J. Math. Phys., 12 (1971), 945-952.   Google Scholar [4] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar [5] D. Bonheure, J. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar [6] A. Boscaggin, G. Feltrin and F. Zanolin, Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree, Trans. Amer. Math. Soc., to appear. Google Scholar [7] L. H. Erbe, S. C. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184 (1994), 640-648.  doi: 10.1006/jmaa.1994.1227.  Google Scholar [8] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743-748.  doi: 10.2307/2160465.  Google Scholar [9] G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems, Adv. Differential Equations, 20 (2015), 937-982.   Google Scholar [10] G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: a topological approach, J. Differential Equations, 259 (2015), 925-963.  doi: 10.1016/j.jde.2015.02.032.  Google Scholar [11] G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 262 (2017), 4255-4291.  doi: 10.1016/j.jde.2017.01.009.  Google Scholar [12] M. Gaudenzi, P. Habets and F. Zanolin, An example of a superlinear problem with multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena, 51 (2003), 259-272.   Google Scholar [13] M. Gaudenzi, P. Habets and F. Zanolin, Positive solutions of superlinear boundary value problems with singular indefinite weight, Commun. Pure Appl. Anal., 2 (2003), 411-423.  doi: 10.3934/cpaa.2003.2.411.  Google Scholar [14] P. M. Girão and J. M. Gomes, Multi-bump nodal solutions for an indefinite non-homogeneous elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 797-817.  doi: 10.1017/S0308210508000474.  Google Scholar [15] R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.   Google Scholar [16] K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.  doi: 10.1006/jdeq.1998.3475.  Google Scholar [17] R. Manásevich, F. I. Njoku and F. Zanolin, Positive solutions for the one-dimensional pLaplacian, Differential Integral Equations, 8 (1995), 213-222.   Google Scholar [18] R. D. Nussbaum, The fixed point index and some applications, vol. 94 of Séminaire de Mathématiques Suprieures [Seminar on Higher Mathematics], Presses de l'Université de Montréal, Montreal, QC, 1985.  Google Scholar [19] R. D. Nussbaum, The fixed point index and fixed point theorems, in Topological methods for ordinary differential equations (Montecatini Terme, 1991), vol. 1537 of Lecture Notes in Math. , Springer, Berlin, 1993, pp. 143-205. doi: 10.1007/BFb0085077.  Google Scholar [20] H.-J. Ruppen, Multiplicity results for a semilinear. elliptic differential equation with conflicting nonlinearities, J. Differential Equations, 147 (1998), 79-122.  doi: 10.1006/jdeq.1998.3419.  Google Scholar

show all references

##### References:
 [1] S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.  doi: 10.1006/jfan.1996.0125.  Google Scholar [2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave, convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.  doi: 10.1006/jfan.1994.1078.  Google Scholar [3] D. L. T. Anderson, Stability of time-dependent particlelike solutions in nonlinear field theories. Ⅱ, J. Math. Phys., 12 (1971), 945-952.   Google Scholar [4] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar [5] D. Bonheure, J. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight, J. Differential Equations, 214 (2005), 36-64.  doi: 10.1016/j.jde.2004.08.009.  Google Scholar [6] A. Boscaggin, G. Feltrin and F. Zanolin, Positive solutions for super-sublinear indefinite problems: high multiplicity results via coincidence degree, Trans. Amer. Math. Soc., to appear. Google Scholar [7] L. H. Erbe, S. C. Hu and H. Wang, Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl., 184 (1994), 640-648.  doi: 10.1006/jmaa.1994.1227.  Google Scholar [8] L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc., 120 (1994), 743-748.  doi: 10.2307/2160465.  Google Scholar [9] G. Feltrin and F. Zanolin, Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems, Adv. Differential Equations, 20 (2015), 937-982.   Google Scholar [10] G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: a topological approach, J. Differential Equations, 259 (2015), 925-963.  doi: 10.1016/j.jde.2015.02.032.  Google Scholar [11] G. Feltrin and F. Zanolin, Multiplicity of positive periodic solutions in the superlinear indefinite case via coincidence degree, J. Differential Equations, 262 (2017), 4255-4291.  doi: 10.1016/j.jde.2017.01.009.  Google Scholar [12] M. Gaudenzi, P. Habets and F. Zanolin, An example of a superlinear problem with multiple positive solutions, Atti Sem. Mat. Fis. Univ. Modena, 51 (2003), 259-272.   Google Scholar [13] M. Gaudenzi, P. Habets and F. Zanolin, Positive solutions of superlinear boundary value problems with singular indefinite weight, Commun. Pure Appl. Anal., 2 (2003), 411-423.  doi: 10.3934/cpaa.2003.2.411.  Google Scholar [14] P. M. Girão and J. M. Gomes, Multi-bump nodal solutions for an indefinite non-homogeneous elliptic problem, Proc. Roy. Soc. Edinburgh Sect. A, 139 (2009), 797-817.  doi: 10.1017/S0308210508000474.  Google Scholar [15] R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction-diffusion equations, J. Differential Equations, 167 (2000), 36-72.   Google Scholar [16] K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities, J. Differential Equations, 148 (1998), 407-421.  doi: 10.1006/jdeq.1998.3475.  Google Scholar [17] R. Manásevich, F. I. Njoku and F. Zanolin, Positive solutions for the one-dimensional pLaplacian, Differential Integral Equations, 8 (1995), 213-222.   Google Scholar [18] R. D. Nussbaum, The fixed point index and some applications, vol. 94 of Séminaire de Mathématiques Suprieures [Seminar on Higher Mathematics], Presses de l'Université de Montréal, Montreal, QC, 1985.  Google Scholar [19] R. D. Nussbaum, The fixed point index and fixed point theorems, in Topological methods for ordinary differential equations (Montecatini Terme, 1991), vol. 1537 of Lecture Notes in Math. , Springer, Berlin, 1993, pp. 143-205. doi: 10.1007/BFb0085077.  Google Scholar [20] H.-J. Ruppen, Multiplicity results for a semilinear. elliptic differential equation with conflicting nonlinearities, J. Differential Equations, 147 (1998), 79-122.  doi: 10.1006/jdeq.1998.3419.  Google Scholar
The figure shows an example of $3$ positive solutions to the Dirichlet problem associated with (1.1) on $\mathopen{[}0, 3\pi\mathclose{]}$, where $\tau = \pi$, $\sigma = 2\pi$, $L = 3\pi$, $a (x) = \sin^{+}(x)$, $b (x) = \sin^{-}(x)$ (as in the upper part of the figure), $g (s) = s^{2}$, $k (s) = s^{3}$ (for $s>0$).For $\mu = 1$, Theorem 1.1 ensures the existence of $3$ positive solutions, whose graphs are located in the lower part of the figure
The figure shows an example of $3$ positive solutions to the equation $u''+\alpha_{1}a_{1}(x) g_{1}(u)-\beta_{1}b_{1}(x) k_{1}(u)+\alpha_{2}a_{2}(x) g_{2}(u) = 0$ on $\mathopen{[}0, 5\mathclose{]}$ with $u (0) = u'(5) = 0$, whose graphs are located in the lower part of the figure.For this simulation we have chosen $\alpha_{1} = 10$, $\alpha_{2} = 2$, $\beta_{1} = 20$ and the weight functions as in the upper part of the figure, that is $a_{1}(x) = 1$ in $\mathopen{[}0, 2\mathclose{]}$, $-b_{1}(x) = -\sin (\pi x)$ in $\mathopen{[}2, 3\mathclose{]}$, $a_{2}(x) = 0$ in $\mathopen{[}3, 4\mathclose{]}$, $a_{2}(x) = -\sin (\pi x)$ in $\mathopen{[}4, 5\mathclose{]}$.Moreover, we have taken $g_{1}(s) = g_{2}(s) = s\arctan (s)$ and $k_{1}(s) = s/(1+s^{2})$ (for $s>0$).Notice that $k_{1}(s)$ has not a superlinear behavior, since $\lim_{s\to 0^{+}}k_{1}(s)/s = 1>0$ and $\lim_{s\to +\infty}k_{1}(s)/s = 0$.Then [10,Theorem 5.3] does not apply, contrary to Theorem 4.1
 [1] M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 [2] Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436 [3] Russell Johnson, Luca Zampogni. On the inverse Sturm-Liouville problem. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 405-428. doi: 10.3934/dcds.2007.18.405 [4] Trad Alotaibi, D. D. Hai, R. Shivaji. Existence and nonexistence of positive radial solutions for a class of $p$-Laplacian superlinear problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4655-4666. doi: 10.3934/cpaa.2020131 [5] Julián López-Góme, Andrea Tellini, F. Zanolin. High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems. Communications on Pure & Applied Analysis, 2014, 13 (1) : 1-73. doi: 10.3934/cpaa.2014.13.1 [6] Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014 [7] N. A. Chernyavskaya, L. A. Shuster. Spaces admissible for the Sturm-Liouville equation. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1023-1052. doi: 10.3934/cpaa.2018050 [8] Chuan-Fu Yang, Natalia Pavlovna Bondarenko, Xiao-Chuan Xu. An inverse problem for the Sturm-Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Problems & Imaging, 2020, 14 (1) : 153-169. doi: 10.3934/ipi.2019068 [9] Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050 [10] Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593 [11] Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 1061-1069. doi: 10.3934/proc.2007.2007.1061 [12] Leszek Gasiński, Nikolaos S. Papageorgiou. Multiplicity of solutions for Neumann problems with an indefinite and unbounded potential. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1985-1999. doi: 10.3934/cpaa.2013.12.1985 [13] Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068 [14] Chuan-Fu Yang, Natalia Pavlovna Bondarenko. A partial inverse problem for the Sturm-Liouville operator on the lasso-graph. Inverse Problems & Imaging, 2019, 13 (1) : 69-79. doi: 10.3934/ipi.2019004 [15] Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95 [16] Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335 [17] Michael E. Filippakis, Nikolaos S. Papageorgiou. Existence and multiplicity of positive solutions for nonlinear boundary value problems driven by the scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2004, 3 (4) : 729-756. doi: 10.3934/cpaa.2004.3.729 [18] Alberto Boscaggin, Maurizio Garrione. Positive solutions to indefinite Neumann problems when the weight has positive average. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5231-5244. doi: 10.3934/dcds.2016028 [19] Rashad M. Asharabi, Jürgen Prestin. Computing eigenpairs of two-parameter Sturm-Liouville systems using the bivariate sinc-Gauss formula. Communications on Pure & Applied Analysis, 2020, 19 (8) : 4143-4158. doi: 10.3934/cpaa.2020185 [20] Elimhan N. Mahmudov. Optimization of fourth order Sturm-Liouville type differential inclusions with initial point constraints. Journal of Industrial & Management Optimization, 2020, 16 (1) : 169-187. doi: 10.3934/jimo.2018145

2019 Impact Factor: 1.105

## Metrics

• PDF downloads (34)
• HTML views (112)
• Cited by (1)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]