ISSN:

1078-0947

eISSN:

1553-5231

All Issues

## Discrete & Continuous Dynamical Systems - A

August 2015 , Volume 35 , Issue 8

Select all articles

Export/Reference:

On a Ermakov-Painlevé II reduction in three-ion electrodiffusion. A Dirichlet boundary value problem

2015, 35(8): 3277-3292
doi: 10.3934/dcds.2015.35.3277

*+*[Abstract](752)*+*[PDF](236.7KB)**Abstract:**

Two-point boundary value problems of Dirichlet type are investigated for a Ermakov-Painlevé II equation which arises out of a reduction of a three-ion electrodiffusion Nernst-Planck model system. In addition, it is shown how Ermakov invariants may be employed to solve a hybrid Ermakov-Painlevé II triad in terms of a solution of the single component integrable Ermakov-Painlevé II reduction. The latter is related to the classical Painlevé II equation.

2015, 35(8): 3293-3313
doi: 10.3934/dcds.2015.35.3293

*+*[Abstract](978)*+*[PDF](3154.9KB)**Abstract:**

We estimate the Hausdorff dimension of hyperbolic Julia sets of maps from the well-known family $F_{\lambda,n}(z) = z^n + \lambda/z^n$, $n \ge 2$, $\lambda \in \mathbb{C} \setminus \{0\}$. In particular, we show that $\dim_H J(F_{\lambda,n}) = \mathcal O (1/\ln |\lambda|)$ for large $|\lambda|$, and $\dim_H J(F_{\lambda,n}) = 1 + \mathcal O (1/\ln n)$ for large $n$ in the three cases: when $J(F_{\lambda,n})$ is a Cantor set, a Cantor set of quasicircles and a Sierpiński curve.

2015, 35(8): 3315-3326
doi: 10.3934/dcds.2015.35.3315

*+*[Abstract](887)*+*[PDF](368.3KB)**Abstract:**

Let $M$ be a compact $n$-dimensional Riemanian manifold, End($M$) the set of the endomorphisms of $M$ with the usual $\mathcal{C}^0$ topology and $\phi:M\to\mathbb{R}$ continuous. We prove, extending the main result of [2], that there exists a dense subset of $\mathcal{A}$ of End($M$) such that, if $f\in\mathcal{A}$, there exists a $f$ invariant measure $\mu_{\max}$ supported on a periodic orbit that maximizes the integral of $\phi$ among all $f$ invariant Borel probability measures.

2015, 35(8): 3327-3342
doi: 10.3934/dcds.2015.35.3327

*+*[Abstract](1014)*+*[PDF](616.2KB)**Abstract:**

In this paper, we study the global existence and regularity of Hölder continuous solutions for a series of nonlinear partial differential equations describing nonlinear waves.

2015, 35(8): 3343-3376
doi: 10.3934/dcds.2015.35.3343

*+*[Abstract](741)*+*[PDF](707.8KB)**Abstract:**

We continue our study initiated in [4] of the interaction of a ground state with a potential considering here a class of trapping potentials. We track the precise asymptotic behavior of the solution if the interaction is weak, either because the ground state moves away from the potential or is very fast.

2015, 35(8): 3377-3392
doi: 10.3934/dcds.2015.35.3377

*+*[Abstract](698)*+*[PDF](446.3KB)**Abstract:**

Given $s\in(0,1)$, we consider the problem of minimizing the fractional Gagliardo seminorm in $H^s$ with prescribed condition outside the ball and under the further constraint of attaining zero value in a given set $K$.

We investigate how the energy changes in dependence of such set. In particular, under mild regularity conditions, we show that adding a set $A$ to $K$ increases the energy of at most the measure of $A$ (this may be seen as a perturbation result for small sets $A$).

Also, we point out a monotonicity feature of the energy with respect to the prescribed sets and the boundary conditions.

2015, 35(8): 3393-3415
doi: 10.3934/dcds.2015.35.3393

*+*[Abstract](862)*+*[PDF](497.7KB)**Abstract:**

In this paper, we consider the following Schrödinger equation with critical growth $$-\Delta u+(\lambda a(x)-\delta)u=|u|^{2^*-2}u \quad \hbox{ in } \mathbb{R}^N, $$ where $N\geq 5$, $2^*$ is the critical Sobolev exponent, $\delta>0$ is a constant, $a(x)\geq 0$ and its zero set is not empty. We will show that if the zero set of $a(x)$ has several isolated connected components $\Omega_1,\cdots,\Omega_k$ such that the interior of $\Omega_i (i=1, 2, ..., k)$ is not empty and $\partial\Omega_i (i=1, 2, ..., k)$ is smooth, then for any non-empty subset $J\subset \{1,2,\cdots,k\}$ and $\lambda$ sufficiently large, the equation admits a solution which is trapped in a neighborhood of $\bigcup_{j\in J}\Omega_j$. Our strategy to obtain the main results is as follows: By using local mountain pass method combining with penalization of the nonlinearities, we first prove the existence of single-bump solutions which are trapped in the neighborhood of only one isolated component of zero set. Then we construct the multi-bump solution by summing these one-bump solutions as the first approximation solution. The real solution will be obtained by delicate estimates of the error term, this last step is done by using Contraction Image Principle.

2015, 35(8): 3417-3436
doi: 10.3934/dcds.2015.35.3417

*+*[Abstract](1044)*+*[PDF](505.7KB)**Abstract:**

We study the large-time behavior of the globally coupled Winfree model in a large coupling regime. The Winfree model is the first mathematical model for the synchronization phenomenon in an ensemble of weakly coupled limit-cycle oscillators. For the dynamic formation of phase-locked states, we provide a sufficient framework in terms of geometric conditions on the coupling functions and coupling strength. We show that in the proposed framework, the emergent phase-locked state is the unique equilibrium state and it is asymptotically stable in an $l^1$-norm; further, we investigate its configurational structure. We also provide several numerical simulations, and compare them with our analytical results.

2015, 35(8): 3437-3461
doi: 10.3934/dcds.2015.35.3437

*+*[Abstract](942)*+*[PDF](508.0KB)**Abstract:**

We consider the Cauchy problem for incompressible viscoelastic fluids in the whole space $\mathbb{R}^d$ ($d=2,3$). By introducing a new decomposition via Helmholtz's projections, we first provide an alternative proof on the existence of global smooth solutions near equilibrium. Then under additional assumptions that the initial data belong to $L^1$ and their Fourier modes do not degenerate at low frequencies, we obtain the optimal $L^2$ decay rates for the global smooth solutions and their spatial derivatives. At last, we establish the weak-strong uniqueness property in the class of finite energy weak solutions for the incompressible viscoelastic system.

2015, 35(8): 3463-3482
doi: 10.3934/dcds.2015.35.3463

*+*[Abstract](1235)*+*[PDF](474.9KB)**Abstract:**

This paper is concerned with degenerate chemotaxis-Navier-Stokes systems with position-dependent sensitivity on a two dimensional bounded domain. It is known that in the case without a position-dependent sensitivity function, Tao-Winkler (2012) constructed a globally bounded weak solution of a chemotaxis-Stokes system with any porous medium diffusion, and Winkler (2012, 2014) succeeded in proving global existence and stabilization of classical solutions to a chemotaxis-Navier-Stokes system with linear diffusion. The present work shows global existence and boundedness of weak solutions to a chemotaxis-Navier-Stokes system with position-dependent sensitivity for any porous medium diffusion.

2015, 35(8): 3483-3501
doi: 10.3934/dcds.2015.35.3483

*+*[Abstract](707)*+*[PDF](421.3KB)**Abstract:**

In the dynamics of a rotation of the unit circle by an irrational angle $\alpha\in(0,1)$, we study the evolution of partitions whose atoms are finite unions of left-closed right-open intervals with endpoints lying on the past trajectory of the point $0$. Unlike the standard framework, we focus on partitions whose atoms are disconnected sets. We show that the refinements of these partitions eventually coincide with the refinements of a preimage of the Sturmian partition, which consists of two intervals $[0,1-\alpha)$ and $[1-\alpha,1)$. In particular, the refinements of the partitions eventually consist of connected sets, i.e., intervals. We reformulate this result in terms of Sturmian subshifts: we show that for every non-trivial factor mapping from a one-sided Sturmian subshift, satisfying a mild technical assumption, the sliding block code of sufficiently large length induced by the mapping is injective.

2015, 35(8): 3503-3531
doi: 10.3934/dcds.2015.35.3503

*+*[Abstract](1067)*+*[PDF](554.6KB)**Abstract:**

In this paper, we investigate the quasilinear Keller-Segel equations (q-K-S): \[ \left\{ \begin{split} &n_t=\nabla\cdot\big(D(n)\nabla n\big)-\nabla\cdot\big(\chi(n)\nabla c\big)+\mathcal{R}(n), \qquad x\in\Omega,\,t>0,\\ &\varrho c_t=\Delta c-c+n, \qquad x\in\Omega,\,t>0, \end{split} \right. \] under homogeneous Neumann boundary conditions in a bounded domain $\Omega\subset\mathbb{R}^N$. For both $\varrho=0$ (parabolic-elliptic case) and $\varrho>0$ (parabolic-parabolic case), we will show the global-in-time existence and uniform-in-time boundedness of solutions to equations (q-K-S) with both non-degenerate and

*degenerate*diffusions on the

*non-convex*domain $\Omega$, which provide a supplement to the dichotomy boundedness vs. blow-up in parabolic-elliptic/parabolic-parabolic chemotaxis equations with degenerate diffusion, nonlinear sensitivity and logistic source. In particular, we improve the recent results obtained by Wang-Li-Mu (2014, Disc. Cont. Dyn. Syst.) and Wang-Mu-Zheng (2014, J. Differential Equations).

2015, 35(8): 3533-3567
doi: 10.3934/dcds.2015.35.3533

*+*[Abstract](872)*+*[PDF](651.8KB)**Abstract:**

We construct two families of non-localized standing waves for the hyperbolic cubic nonlinear Schrödinger equation \[iu_t+u_{xx}-u_{yy}+|u|^2u=0.\] The first family of standing waves consists of solutions which correspond to some generalized breathers for each fixed time $t$, while solutions in the second family are periodic both in $x$ and $y$. The second family of solutions were numerically observed by Vuillon, Dutykh and Fedele in a recent preprint [17].

2015, 35(8): 3569-3584
doi: 10.3934/dcds.2015.35.3569

*+*[Abstract](835)*+*[PDF](603.1KB)**Abstract:**

This paper analyzes heat equation with memory in the case of kernels that are linear combinations of Gamma distributions. In this case, it is possible to rewrite the non-local equation as a local system of partial differential equations of hyperbolic type. Stability is studied in details by analyzing the corresponding dispersion relation, providing sufficient stability condition for the general case and sharp instability thresholds in the case of linear combinations of the first three Gamma functions.

2015, 35(8): 3585-3626
doi: 10.3934/dcds.2015.35.3585

*+*[Abstract](1094)*+*[PDF](695.2KB)**Abstract:**

We consider in this work some class of strongly perturbed for the semilinear heat equation with Sobolev sub-critical power nonlinearity. We first derive a Lyapunov functional in similarity variables and then use it to derive the blow-up rate. We also classify all possible asymptotic behaviors of the solution when it approaches to singularity. Finally, we describe precisely the blow-up profiles corresponding to these behaviors.

2015, 35(8): 3627-3682
doi: 10.3934/dcds.2015.35.3627

*+*[Abstract](866)*+*[PDF](1267.3KB)**Abstract:**

Motivated by some nonlinear models recently arising in Micro-Electro-Mechanical System (MEMS) and new progress on one-dimensional mean curvature type problems, we investigate the existence and exact numbers of positive solutions for a class of boundary value problems with $\varphi$-Laplacian $$ -(\varphi(u'))'=\lambda f(u)\; on (-L, L),\quad u(-L)=u(L)=0, $$ when the parameters $\lambda$ and $L$ vary. Various exact multiplicity results as well as global bifurcation diagrams are obtained. These results include the applications to one-dimensional MEMS equations with fringing field as well as mean curvature type problems. We also extend and improve one of the main results of Korman and Li [

*Proc. Roy. Soc. Edinburgh Sect. A, 140(6):1197--1215, 2010*] (Theorem 3.4). With the aid of numerical simulations, we find many interesting new examples, which reveal the striking complexity of bifurcation patterns for the problem.

2015, 35(8): 3683-3706
doi: 10.3934/dcds.2015.35.3683

*+*[Abstract](753)*+*[PDF](513.7KB)**Abstract:**

We study linearly degenerate hyperbolic systems of rich type in one space dimension. It is showed that such a system admits exact traveling wave solutions after a finite time, provided that the initial data are Riemann type outside a space interval. We prove the convergence of entropy solutions toward traveling waves in the $L^1$ norm as the time goes to infinity. The traveling waves are determined explicitly in terms of the initial data and the system. We also obtain the stability of entropy solutions in $L^1$. Applications concern physical models such as the generalized extremal surface equations, the Born-Infeld system and augmented Born-Infeld system.

2015, 35(8): 3707-3719
doi: 10.3934/dcds.2015.35.3707

*+*[Abstract](772)*+*[PDF](378.9KB)**Abstract:**

It is a big problem to distinguish between integrable and non-integrable Hamiltonian systems. We provide a new approach to prove the non-integrability of homogeneous Hamiltonian systems with two degrees of freedom. The homogeneous degree can be taken from real values (not necessarily integer). The proof is based on the blowing-up theory which McGehee established in the collinear three-body problem. We also compare our result with Molares-Ramis theory which is the strongest theory in this field.

2015, 35(8): 3721-3743
doi: 10.3934/dcds.2015.35.3721

*+*[Abstract](761)*+*[PDF](152.3KB)**Abstract:**

We consider the exact controllability problem for some uncoupled semilinear wave equations with proportional, but different principal operators in a bounded domain. The control is locally distributed, and its support satisfies the geometric control condition of Bardos-Lebeau-Rauch. First, we examine the case of a nonlinearity that is asymptotically linear; using a combination of the Bardos-Lebeau-Rauch observability result for a single wave equation and a new unique continuation result for uncoupled wave equations, we solve the underlying linear control problem. The linear controllability result thus established, generalizes to higher space dimensions an earlier result of Haraux established in the one-dimensional setting. Then, applying a fixed point argument, we derive the controllability of the nonlinear problem. Afterwards, we use an iterative approach to prove a local controllability result when the nonlinearity is super-linear. Finally, we discuss some extensions of our results and some open problems.

2015, 35(8): 3745-3769
doi: 10.3934/dcds.2015.35.3745

*+*[Abstract](896)*+*[PDF](535.9KB)**Abstract:**

In this paper, we introduce concepts of pathwise random almost periodic and almost automorphic solutions for dynamical systems generated by non-autonomous stochastic equations. These solutions are pathwise stochastic analogues of deterministic dynamical systems. The existence and bifurcation of random periodic (random almost periodic, random almost automorphic) solutions have been established for a one-dimensional stochastic equation with multiplicative noise.

2015, 35(8): 3771-3797
doi: 10.3934/dcds.2015.35.3771

*+*[Abstract](777)*+*[PDF](503.2KB)**Abstract:**

We consider the following anisotropic boundary value problem $$\nabla (a(x)\nabla u) + a(x)u^p = 0, \;\; u>0 \ \ \mbox{in} \ \Omega, \quad u = 0 \ \ \mbox{on} \ \partial\Omega,$$ where $\Omega \subset \mathbb{R}^2$ is a bounded smooth domain, $p$ is a large exponent and $a(x)$ is a positive smooth function. We investigate the effect of anisotropic coefficient $a(x)$ on the existence of concentrating solutions. We show that at a given strict local maximum point of $a(x)$, there exist arbitrarily many concentrating solutions.

2015, 35(8): 3799-3825
doi: 10.3934/dcds.2015.35.3799

*+*[Abstract](917)*+*[PDF](543.4KB)**Abstract:**

Long time behavior of solutions for weakly damped gKdV equations on the real line is studied. With some weak regularity assumptions on the force $f$, we prove the existence of global attractor in $H^s$ for any $s\geq 1$. The asymptotic compactness of solution semigroup is shown by Ball's energy method and Goubet's high-low frequency decomposition if $s$ is an integer and not an integer, respectively.

2015, 35(8): 3827-3855
doi: 10.3934/dcds.2015.35.3827

*+*[Abstract](664)*+*[PDF](603.3KB)**Abstract:**

In this paper we develop the

*continuous averaging*method of Treschev to work on the simultaneous Diophantine approximation and apply the result to give a new proof of the Nekhoroshev theorem. We obtain a sharp normal form theorem and explicit estimates of the stability constants appearing in the Nekhoroshev theorem.

2015, 35(8): 3857-3877
doi: 10.3934/dcds.2015.35.3857

*+*[Abstract](1174)*+*[PDF](480.2KB)**Abstract:**

In this paper, we study the following nonlinear problem of Kirchhoff type: \begin{equation}\label{(0.1)} \left\{% \begin{array}{ll} -\left(a+b\int\limits_{\mathbb{R}^3}|\nabla u|^2\right)\Delta u+V(x)u=f(u), & \hbox{$x\in \mathbb{R}^3$}, \\ u>0, & \hbox{$x\in \mathbb{R}^3$}, (0.1) \\ \end{array}% \right.\end{equation} where $a,$ $b>0$ are constants, $V:\mathbb{R}^3\rightarrow\mathbb{R}$ and $f(t)$ is subcritical and superlinear at infinity. Under certain assumptions on non-constant potential $V$, we prove the existence of positive high energy solutions by using a linking argument with a barycenter map restricted on a Nehari-Pohožaev type manifold.

Our main result has solved Kirchhoff equation (0.1) with superlinear nonlinearities, which has not been studied, and can be viewed as a partial extension of a recent result of He and Zou in [9] concerning Kirchhoff equations with 4-superlinear nonlinearities.

2017 Impact Factor: 1.179

## Readers

## Authors

## Editors

## Referees

## Librarians

## More

## Email Alert

Add your name and e-mail address to receive news of forthcoming issues of this journal:

[Back to Top]