All Issues

Volume 24, 2019

Volume 23, 2018

Volume 22, 2017

Volume 21, 2016

Volume 20, 2015

Volume 19, 2014

Volume 18, 2013

Volume 17, 2012

Volume 16, 2011

Volume 15, 2011

Volume 14, 2010

Volume 13, 2010

Volume 12, 2009

Volume 11, 2009

Volume 10, 2008

Volume 9, 2008

Volume 8, 2007

Volume 7, 2007

Volume 6, 2006

Volume 5, 2005

Volume 4, 2004

Volume 3, 2003

Volume 2, 2002

Volume 1, 2001

Centered around dynamics, DCDS-B is an interdisciplinary journal focusing on the interactions between mathematical modeling, analysis and scientific computations. The mission of the Journal is to bridge mathematics and sciences by publishing research papers that augment the fundamental ways we interpret, model and predict scientific phenomena. The Journal covers a broad range of areas including chemical, engineering, physical and life sciences. A more detailed indication is given by the subject interests of the members of the Editorial Board.

DCDS-B is edited by a global community of leading scientists to guarantee its high standards and a close link to the scientific and engineering communities. A unique feature of this journal is its streamlined review process and rapid publication. Authors are kept informed at all times throughout the process through the rapid, direct and personal communication between the authors and editors.

  • AIMS is a member of COPE. All AIMS journals adhere to the publication ethics and malpractice policies outlined by COPE.
  • Publishes 10 issues a year in January, March, May, June, July, August, September, October, November and December.
  • Publishes both online and in print.
  • Indexed in Science Citation Index, ISI Alerting Services, CompuMath Citation Index, Current Contents/Physics, Chemical, & Earth Sciences, INSPEC, Mathematical Reviews, MathSciNet, PASCAL/CNRS, Scopus, Web of Science and Zentralblatt MATH.
  • Archived in Portico and CLOCKSS.
  • DCDS-B is a publication of the American Institute of Mathematical Sciences. All rights reserved.

Note: “Most Cited” is by Cross-Ref , and “Most Downloaded” is based on available data in the new website.

Select all articles


Existence and uniqueness of solutions of free boundary problems in heterogeneous environments
Mingxin Wang
2019, 24(2) : 415-421 doi: 10.3934/dcdsb.2018179 +[Abstract](672) +[HTML](327) +[PDF](328.44KB)

In this short paper we study the existence and uniqueness of solutions of free boundary problems coming from ecology in heterogeneous environments.

Global existence for an attraction-repulsion chemotaxis fluid model with logistic source
Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira and Élder J. Villamizar-Roa
2019, 24(2) : 423-447 doi: 10.3934/dcdsb.2018180 +[Abstract](583) +[HTML](368) +[PDF](582.6KB)

We consider an attraction-repulsion chemotaxis model coupled with the Navier-Stokes system. This model describes the interaction between a type of cells (e.g., bacteria), which proliferate following a logistic law, and two chemical signals produced by the cells themselves that degraded at a constant rate. Also, it is considered that the chemoattractant is consumed with a rate proportional to the amount of organisms. The cells and chemical substances are transported by a viscous incompressible fluid under the influence of a force due to the aggregation of cells. We prove the existence of global mild solutions in bounded domains of \begin{document}$\mathbb{R}^N,$\end{document} \begin{document}$N = 2, 3,$\end{document} for small initial data in \begin{document}$L^p$\end{document}-spaces.

Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains
Dingshi Li and Xiaohu Wang
2019, 24(2) : 449-465 doi: 10.3934/dcdsb.2018181 +[Abstract](628) +[HTML](343) +[PDF](438.88KB)

In this paper, we investigate the asymptotic behavior for non-autonomous stochastic complex Ginzburg-Landau equations with multiplicative noise on thin domains. For this aim, we first show that the existence and uniqueness of random attractors for the considered equations and the limit equations. Then, we establish the upper semicontinuity of these attractors when the thin domains collapse onto an interval.

Hopf bifurcation and pattern formation in a delayed diffusive logistic model with spatial heterogeneity
Qingyan Shi, Junping Shi and Yongli Song
2019, 24(2) : 467-486 doi: 10.3934/dcdsb.2018182 +[Abstract](793) +[HTML](355) +[PDF](1083.04KB)

In this paper, we study the Hopf bifurcation and spatiotemporal pattern formation of a delayed diffusive logistic model under Neumann boundary condition with spatial heterogeneity. It is shown that for large diffusion coefficient, a supercritical Hopf bifurcation occurs near the non-homogeneous positive steady state at a critical time delay value, and the dependence of corresponding spatiotemporal patterns on the heterogeneous resource function is demonstrated via numerical simulations. Moreover, it is proved that the heterogeneous resource supply contributes to the increase of the temporal average of total biomass of the population even though the total biomass oscillates periodically in time.

Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system
Qi An and Weihua Jiang
2019, 24(2) : 487-510 doi: 10.3934/dcdsb.2018183 +[Abstract](599) +[HTML](470) +[PDF](2468.96KB)

We study the Turing-Hopf bifurcation and give a simple and explicit calculation formula of the normal forms for a general two-components system of reaction-diffusion equation with time delays. We declare that our formula can be automated by Matlab. At first, we extend the normal forms method given by Faria in 2000 to Hopf-zero singularity. Then, an explicit formula of the normal forms for Turing-Hopf bifurcation are given. Finally, we obtain the possible attractors of the original system near the Turing-Hopf singularity by the further analysis of the normal forms, which mainly include, the spatially non-homogeneous steady-state solutions, periodic solutions and quasi-periodic solutions.

Bistable waves of a recursive system arising from seasonal age-structured population models
Yingli Pan, Ying Su and Junjie Wei
2019, 24(2) : 511-528 doi: 10.3934/dcdsb.2018184 +[Abstract](500) +[HTML](363) +[PDF](441.4KB)

This paper is devoted to the existence, uniqueness and stability of bistable traveling waves for a recursive system, which is defined by the iterations of the Ponicaré map of a yearly periodic age-structured population model derived in the companion paper [8]. The existence of the wave is established by appealing to a monotone dynamical system theory, and the uniqueness and stability are obtained by employing a squeezing method.

The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition
Wen Tan
2019, 24(2) : 529-546 doi: 10.3934/dcdsb.2018194 +[Abstract](635) +[HTML](350) +[PDF](471.06KB)

In this paper, we investigate the asymptotic regularity of the minimal pullback attractor of a non-autonomous quasi-linear parabolic \begin{document}$p$\end{document}-Laplacian equation with dynamical boundary condition. First, we establish the higher-order integrability of the difference of solutions near the initial time. Then we show that, under the assumption that the time-depending forcing terms only satisfy some \begin{document}$L^2$\end{document} integrability, the \begin{document}$L^2(Ω)× L^2(\partialΩ)$\end{document} pullback \begin{document}$\mathscr{D}$\end{document}-attractor can actually attract the \begin{document}$L^2(Ω)× L^2(\partialΩ)$\end{document}-bounded set in \begin{document}$L^{2+δ}(Ω)× L^{2+δ}(\partialΩ)$\end{document}-norm for any \begin{document}$δ∈[0,∞)$\end{document}.

Cosymmetry approach and mathematical modeling of species coexistence in a heterogeneous habitat
Alexander V. Budyansky, Kurt Frischmuth and Vyacheslav G. Tsybulin
2019, 24(2) : 547-561 doi: 10.3934/dcdsb.2018196 +[Abstract](643) +[HTML](242) +[PDF](776.58KB)

We explore an approach based on the theory of cosymmetry to model interaction of predators and prey in a two-dimensional habitat. The model under consideration is formulated as a system of nonlinear parabolic equations with spatial heterogeneity of resources and species. Firstly, we analytically determine system parameters, for which the problem has a nontrivial cosymmetry. To this end, we formulate cosymmetry relations. Next, we employ numerical computations to reveal that under said cosymmetry relations, a one-parameter family of steady states is formed, which may be characterized by different proportions of predators and prey. The numerical analysis is based on the finite difference method (FDM) and staggered grids. It allows to follow the transformation of spatial patterns with time. Eventually, the destruction of the continuous family of equilibria due to mistuned parameters is analyzed. To this end, we derive the so-called cosymmetric selective equation. Investigation of the selective equation gives an insight into scenarios of local competition and coexistence of species, together with their connection to the cosymmetry relations. When the cosymmetry relation is only slightly violated, an effect we call 'memory on the lost family' may be observed. Indeed, in this case, a slow evolution takes place in the vicinity of the lost states of equilibrium.

Efficient representation of invariant manifolds of periodic orbits in the CRTBP
Roberto Castelli
2019, 24(2) : 563-586 doi: 10.3934/dcdsb.2018197 +[Abstract](574) +[HTML](392) +[PDF](10760.32KB)

This paper deals with a methodology for defining and computing an analytical Fourier-Taylor series parameterisation of local invariant manifolds associated to periodic orbits of polynomial vector fields. Following the Parameterisation Method, the functions involved in the series result by solving some linear non autonomous differential equations. Exploiting the Floquet normal form decomposition, the time dependency is removed and the differential problem is rephrased as an algebraic system to be solved for the Fourier coefficients of the unknown periodic functions. The procedure leads to an efficient and fast computational algorithm. Motivated by mission design purposes, the technique is applied in the framework of the Circular Restricted Three Body problem and the parameterisation of local invariant manifolds for several halo orbits is computed and discussed.

Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation
Wei Mao, Liangjian Hu and Xuerong Mao
2019, 24(2) : 587-613 doi: 10.3934/dcdsb.2018198 +[Abstract](632) +[HTML](297) +[PDF](487.02KB)

In this paper, we are concerned with the asymptotic properties and numerical analysis of the solution to hybrid stochastic differential equations with jumps. Applying the theory of M-matrices, we will study the \begin{document}$ p $\end{document}th moment asymptotic boundedness and stability of the solution. Under the non-linear growth condition, we also show the convergence in probability of the Euler-Maruyama approximate solution to the true solution. Finally, some examples are provided to illustrate our new results.

Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion
Litan Yan and Xiuwei Yin
2019, 24(2) : 615-635 doi: 10.3934/dcdsb.2018199 +[Abstract](544) +[HTML](303) +[PDF](455.19KB)

In this paper, we consider the numerical approximation for a class of fractional stochastic partial differential equations driven by infinite dimensional fractional Brownian motion with hurst index \begin{document}$ H∈ (\frac{1}{2}, 1) $\end{document}. By using spectral Galerkin method, we analyze the spatial discretization, and we give the temporal discretization by using the piecewise constant, discontinuous Galerkin method and a Laplace transform convolution quadrature. Under some suitable assumptions, we prove the sharp regularity properties and the optimal strong convergence error estimates for both semi-discrete and fully discrete schemes.

Advection-diffusion equation on a half-line with boundary Lévy noise
Lena-Susanne Hartmann and Ilya Pavlyukevich
2019, 24(2) : 637-655 doi: 10.3934/dcdsb.2018200 +[Abstract](507) +[HTML](321) +[PDF](529.13KB)

In this paper we study a one-dimensional linear advection-diffusion equation on a half-line driven by a Lévy boundary noise. The problem is motivated by the study of contaminant transport models under random sources (P. P. Wang and C. Zheng, Ground water, 43 (2005), [34]). We determine the closed form formulae for mild solutions of this equation with Dirichlet and Neumann noise and study approximations of these solutions by classical solutions obtained with the help of Wong-Zakai approximations of the driving Lévy process.

Persistent two-dimensional strange attractors for a two-parameter family of Expanding Baker Maps
Antonio Pumariño, José Ángel Rodríguez and Enrique Vigil
2019, 24(2) : 657-670 doi: 10.3934/dcdsb.2018201 +[Abstract](464) +[HTML](264) +[PDF](427.79KB)

We characterize the attractors for a two-parameter class of two-dimensional piecewise affine maps. These attractors are strange attractors, probably having finitely many pieces, and coincide with the support of an ergodic absolutely invariant probability measure. Moreover, we demonstrate that every compact invariant set with non-empty interior contains one of these attractors. We also prove the existence, for each natural number \begin{document}$ n, $\end{document} of an open set of parameters in which the respective transformation exhibits at least \begin{document}$ 2^n $\end{document} non connected two-dimensional strange attractors each one of them formed by \begin{document}$ 4^n $\end{document} pieces.

Invasion fronts on graphs: The Fisher-KPP equation on homogeneous trees and Erdős-Réyni graphs
Aaron Hoffman and Matt Holzer
2019, 24(2) : 671-694 doi: 10.3934/dcdsb.2018202 +[Abstract](433) +[HTML](309) +[PDF](999.67KB)

We study the dynamics of the Fisher-KPP equation on the infinite homogeneous tree and Erdős-Réyni random graphs. We assume initial data that is zero everywhere except at a single node. For the case of the homogeneous tree, the solution will either form a traveling front or converge pointwise to zero. This dichotomy is determined by the linear spreading speed and we compute critical values of the diffusion parameter for which the spreading speed is zero and maximal and prove that the system is linearly determined. We also study the growth of the total population in the network and identify the exponential growth rate as a function of the diffusion coefficient, α. Finally, we make predictions for the Fisher-KPP equation on Erdős-Rényi random graphs based upon the results on the homogeneous tree. When α is small we observe via numerical simulations that mean arrival times are linearly related to distance from the initial node and the speed of invasion is well approximated by the linear spreading speed on the tree. Furthermore, we observe that exponential growth rates of the total population on the random network can be bounded by growth rates on the homogeneous tree and provide an explanation for the sub-linear exponential growth rates that occur for small diffusion.

Convergence rate and stability of the split-step theta method for stochastic differential equations with piecewise continuous arguments
Yulan Lu, Minghui Song and Mingzhu Liu
2019, 24(2) : 695-717 doi: 10.3934/dcdsb.2018203 +[Abstract](631) +[HTML](301) +[PDF](568.6KB)

In this paper, we investigate the strong convergence rate of the split-step theta (SST) method for a kind of stochastic differential equations with piecewise continuous arguments (SDEPCAs) under some polynomially growing conditions. It is shown that the SST method with \begin{document}$θ∈[\frac{1}{2},1]$ \end{document} is strongly convergent with order \begin{document}$\frac{1}{2}$ \end{document} in \begin{document}$p$ \end{document}th(\begin{document}$p≥ 2$ \end{document}) moment if both drift and diffusion coefficients are polynomially growing with regard to the delay terms, while the diffusion coefficients are globally Lipschitz continuous in non-delay arguments. The exponential mean square stability of the improved split-step theta (ISST) method is also studied without the linear growth condition. With some relaxed restrictions on the step-size, it is proved that the ISST method with \begin{document}$θ∈(\frac{1}{2},1]$ \end{document} is exponentially mean square stable under the monotone condition. Without any restriction on the step-size, there exists \begin{document}$θ^*∈(\frac{1}{2},1]$ \end{document} such that the ISST method with \begin{document}$θ∈(θ^*,1]$ \end{document} is exponentially stable in mean square. Some numerical simulations are presented to illustrate the analytical theory.

The Rothe method for multi-term time fractional integral diffusion equations
Stanisław Migórski and Shengda Zeng
2019, 24(2) : 719-735 doi: 10.3934/dcdsb.2018204 +[Abstract](443) +[HTML](368) +[PDF](398.58KB)

In this paper we study a class of multi-term time fractional integral diffusion equations. Results on existence, uniqueness and regularity of a strong solution are provided through the Rothe method. Several examples are given to illustrate the applicability of main results.

Dirac-concentrations in an integro-pde model from evolutionary game theory
King-Yeung Lam
2019, 24(2) : 737-754 doi: 10.3934/dcdsb.2018205 +[Abstract](427) +[HTML](278) +[PDF](607.79KB)

Nonlocal Lotka-Volterra models have the property that solutions concentrate as Dirac masses in the limit of small diffusion. Motivated by the existence of moving Dirac-concentrations in the time-dependent problem, we study the qualitative properties of steady states in the limit of small diffusion. Under different conditions on the growth rate and interaction kernel as motivated by the framework of adaptive dynamics, we will show that as the diffusion rate tends to zero the steady state concentrates (ⅰ) at a single location; (ⅱ) at two locations simultaneously; or (ⅲ) at one of two alternative locations. The third result in particular shows that solutions need not be unique. This marks an important difference of the non-local equation with its local counterpart.

Valuation of American strangle option: Variational inequality approach
Junkee Jeon and Jehan Oh
2019, 24(2) : 755-781 doi: 10.3934/dcdsb.2018206 +[Abstract](518) +[HTML](292) +[PDF](567.23KB)

In this paper, we investigate a parabolic variational inequality problem associated with the American strangle option pricing. We obtain the existence and uniqueness of \begin{document}$W^{2, 1}_{p, \rm{loc}}$\end{document} solution to the problem. Also, we analyze the smoothness and monotonicity of two free boundaries. Finally, numerical results of the model based on this problem are described and used to show the boundary properties and the price behavior.

Global dynamics of a latent HIV infection model with general incidence function and multiple delays
Yu Yang, Yueping Dong and Yasuhiro Takeuchi
2019, 24(2) : 783-800 doi: 10.3934/dcdsb.2018207 +[Abstract](857) +[HTML](296) +[PDF](1128.48KB)

In this paper, we propose a latent HIV infection model with general incidence function and multiple delays. We derive the positivity and boundedness of solutions, as well as the existence and local stability of the infection-free and infected equilibria. By constructing Lyapunov functionals, we establish the global stability of the equilibria based on the basic reproduction number. We further study the global dynamics of this model with Holling type-Ⅱ incidence function through numerical simulations. Our results improve and generalize some existing ones. The results show that the prolonged time delay period of the maturation of the newly produced viruses may lead to the elimination of the viruses.

A two-species weak competition system of reaction-diffusion-advection with double free boundaries
Bo Duan and Zhengce Zhang
2019, 24(2) : 801-829 doi: 10.3934/dcdsb.2018208 +[Abstract](494) +[HTML](308) +[PDF](536.11KB)

In this paper, we investigate a two-species weak competition system of reaction-diffusion-advection with double free boundaries that represent the expanding front in a one-dimensional habitat, where a combination of random movement and advection is adopted by two competing species. The main goal is to understand the effect of small advection environment and dynamics of the two species through double free boundaries. We provide a spreading-vanishing dichotomy, which means that both of the two species either spread to the entire space successfully and survive in the new environment as time goes to infinity, or vanish and become extinct in the long run. Furthermore, if the spreading or vanishing of the two species occurs, some sufficient conditions via the initial data are established. When spreading of the two species happens, the long time behavior of solutions and estimates of spreading speed of both free boundaries are obtained.

Boundedness in a three-dimensional Keller-Segel-Stokes system involving tensor-valued sensitivity with saturation
Dan Li, Chunlai Mu, Pan Zheng and Ke Lin
2019, 24(2) : 831-849 doi: 10.3934/dcdsb.2018209 +[Abstract](467) +[HTML](268) +[PDF](539.06KB)

This paper deals with a boundary-value problem for a coupled chemotaxis-Stokes system with logistic source

in three-dimensional smoothly bounded domains, where the parameters $ξ\ge0$, $μ>0$ and $φ∈ W^{1, ∞}(Ω)$, $D$ is a given function satisfying $D(n)\ge C_{D}n^{m-1}$ for all $n>0$ with $m>0$ and $C_{D}>0$. $\mathcal{S}$ is a given function with values in $\mathbb{R}^{3×3}$ which fulfills

with some $C_{\mathcal{S}}>0$ and $α>0$. It is proved that for all reasonably regular initial data, global weak solutions exist whenever $m+2α>\frac{6}{5}$. This extends a recent result by Liu el at. (J. Diff. Eqns, 261 (2016) 967-999) which asserts global existence of weak solutions under the constraints $m+α>\frac{6}{5}$ and $m\ge\frac{1}{3}$.

Mean field model for collective motion bistability
Josselin Garnier, George Papanicolaou and Tzu-Wei Yang
2019, 24(2) : 851-879 doi: 10.3934/dcdsb.2018210 +[Abstract](448) +[HTML](257) +[PDF](5876.6KB)

We consider the Czirók model for collective motion of locusts along a one-dimensional torus. In the model, each agent's velocity locally interacts with other agents' velocities in the system, and there is also exogenous randomness to each agent's velocity. The interaction tends to create the alignment of collectivemotion. By analyzing the associated nonlinear Fokker-Planck equation, we obtain the condition for the existence of stationary order states and the conditions for their linear stability. These conditions depend on the noise level, which should be strong enough, and on the interaction between the agent's velocities, which should be neither too small, nor too strong. We carry out the fluctuation analysis of the interacting system and describe the large deviation principle to calculate the transition probability from one order state to the other. Numerical simulations confirm our analytical findings.

Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two
Dingheng Pi
2019, 24(2) : 881-905 doi: 10.3934/dcdsb.2018211 +[Abstract](550) +[HTML](267) +[PDF](362.69KB)

In this paper we consider an $n$ dimensional piecewise smooth dynamical system. This system has a co-dimension 2 switching manifold Σ which is an intersection of two co-dimension one switching manifolds Σ1 and Σ2. We investigate the relation of periodic orbit of PWS between periodic orbit of its regularized system. If this PWS system has an asymptotically stable crossing periodic orbit γ or sliding periodic orbit, we establish conditions to ensure that also a regularization of the given system has a unique, asymptotically stable, limit cycle in a neighbourhood of γ, converging to γ as the regularization parameter goes to 0.

Global weak solutions for a coupled chemotaxis non-Newtonian fluid
Hafedh Bousbih
2019, 24(2) : 907-929 doi: 10.3934/dcdsb.2018212 +[Abstract](576) +[HTML](302) +[PDF](534.24KB)

This paper focuses on the mathematical analysis of a self-suggested model arising from biology, consisting of dynamics of oxygen diffusion and consumption, chemotaxis process and viscous incompressible non-Newtonian fluid in a bounded domain \begin{document}$Ω \subset \mathbb{R}^d$\end{document}, with \begin{document}$d = 2, 3.$\end{document} The viscosity of the studied fluid is supposed to be non constant and depends on the shear-rate \begin{document}$|{\bf{D}}\boldsymbol{v}|$\end{document} as well as the cell density \begin{document}$m$\end{document} and the oxygen concentration \begin{document}$c$\end{document}. Nonlinearities are also considered in the diffusion terms for the convection-diffusion equations corresponding to \begin{document}$m$\end{document} and \begin{document}$c$\end{document}. Under the choice of suitable structures and convenient assumptions for the nonlinear fluxes, we prove global existence of weak solutions, in the case of a smooth bounded domain subject to Navier's slip conditions at the boundary and for large range of initial data.

Traveling wave solutions for a bacteria system with density-suppressed motility
Roger Lui and Hirokazu Ninomiya
2019, 24(2) : 931-940 doi: 10.3934/dcdsb.2018213 +[Abstract](761) +[HTML](390) +[PDF](221.08KB)

In 2011, Liu et. al. proposed a three-component reaction-diffusion system to model the spread of bacteria and its signaling molecules (AHL) in an expanding cell population. At high AHL levels the bacteria are immotile, but diffuse with a positive diffusion constant at low distributions of AHL. In 2012, Fu et. al. studied a reduced system without considering nutrition and made heuristic arguments about the existence of traveling wave solutions. In this paper we provide rigorous proofs of the existence of traveling wave solutions for the reduced system under some simple conditions of the model parameters.

Hermite spectral method for Long-Short wave equations
Shujuan Lü, Zeting Liu and Zhaosheng Feng
2019, 24(2) : 941-964 doi: 10.3934/dcdsb.2018255 +[Abstract](250) +[HTML](138) +[PDF](459.67KB)

We are concerned with the initial boundary value problem of the Long-Short wave equations on the whole line. A fully discrete spectral approximation scheme is structured by means of Hermite functions in space and central difference in time. A priori estimates are established which are crucial to study the numerical stability and convergence of the fully discrete scheme. Then, unconditionally numerical stability is proved in a space of $H^1({\Bbb R})$ for the envelope of the short wave and in a space of $L^2({\Bbb R})$ for the amplitude of the long wave. Convergence of the fully discrete scheme is shown by the method of error estimates. Finally, numerical experiments are presented and numerical results are illustrated to agree well with the convergence order of the discrete scheme.

Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation terms
Xianbo Sun and Pei Yu
2019, 24(2) : 965-987 doi: 10.3934/dcdsb.2018341 +[Abstract](144) +[HTML](80) +[PDF](522.07KB)

In this paper, we consider a generalized BBM equation with weak backward diffusion, dissipation and Marangoni effects, and study the existence of periodic and solitary waves. Main attention is focused on periodic and solitary waves on a manifold via studying the number of zeros of some linear combination of Abelian integrals. The uniqueness of the periodic waves is established when the equation contains one coefficient in backward diffusion and dissipation terms, by showing that the Abelian integrals form a Chebyshev set. The monotonicity of the wave speed is proved, and moreover the upper and lower bounds of the limiting wave speeds are obtained. Especially, when the equation involves Marangoni effect due to imposed weak thermal gradients, it is shown that at most two periodic waves can exist. The exact conditions are obtained for the existence of one and two periodic waves as well as for the co-existence of one solitary and one periodic waves. The analysis is mainly based on Chebyshev criteria and asymptotic expansions of Abelian integrals near the solitary and singularity.

Thermodynamical potentials of classical and quantum systems
Ruikuan Liu, Tian Ma, Shouhong Wang and Jiayan Yang
2018doi: 10.3934/dcdsb.2018214 +[Abstract](450) +[HTML](239) +[PDF](637.0KB)
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces
Huijie Qiao and Jiang-Lun Wu
2018doi: 10.3934/dcdsb.2018215 +[Abstract](408) +[HTML](237) +[PDF](423.33KB)
Dynamic behavior and optimal scheduling for mixed vaccination strategy with temporary immunity
Siyu Liu, Xue Yang, Yingjie Bi and Yong Li
2018doi: 10.3934/dcdsb.2018216 +[Abstract](630) +[HTML](343) +[PDF](653.24KB)
Non-autonomous reaction-diffusion equations with variable exponents and large diffusion
Antonio Carlos Fernandes, Marcela Carvalho Gonçcalves and Jacson Simsen
2018doi: 10.3934/dcdsb.2018217 +[Abstract](489) +[HTML](298) +[PDF](3152.45KB)
Uniqueness and stability of traveling waves for a three-species competition system with nonlocal dispersal
Guo-Bao Zhang, Fang-Di Dong and Wan-Tong Li
2018doi: 10.3934/dcdsb.2018218 +[Abstract](551) +[HTML](289) +[PDF](472.18KB)
Fluctuations of mRNA distributions in multiple pathway activated transcription
Genghong Lin, Jianshe Yu, Zhan Zhou, Qiwen Sun and Feng Jiao
2018doi: 10.3934/dcdsb.2018219 +[Abstract](486) +[HTML](392) +[PDF](722.11KB)
Global existence and stability in a two-species chemotaxis system
Huanhuan Qiu and Shangjiang Guo
2018doi: 10.3934/dcdsb.2018220 +[Abstract](479) +[HTML](462) +[PDF](1061.01KB)
Novel spectral methods for Schrödinger equations with an inverse square potential on the whole space
Suna Ma, Huiyuan Li and Zhimin Zhang
2018doi: 10.3934/dcdsb.2018221 +[Abstract](487) +[HTML](330) +[PDF](7354.7KB)
Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems
Liang Ding, Rongrong Tian and Jinlong Wei
2018doi: 10.3934/dcdsb.2018222 +[Abstract](507) +[HTML](252) +[PDF](325.95KB)
A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients
Yizhuo Wang and Shangjiang Guo
2018doi: 10.3934/dcdsb.2018223 +[Abstract](461) +[HTML](389) +[PDF](483.02KB)
Synchronization of first-order autonomous oscillators on Riemannian manifolds
Simone Fiori
2018doi: 10.3934/dcdsb.2018233 +[Abstract](318) +[HTML](195) +[PDF](2697.39KB)
Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time
Vladimir Gaitsgory, Alex Parkinson and Ilya Shvartsman
2018doi: 10.3934/dcdsb.2018235 +[Abstract](308) +[HTML](209) +[PDF](512.69KB)
Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center
Jaume Llibre and Yilei Tang
2018doi: 10.3934/dcdsb.2018236 +[Abstract](331) +[HTML](275) +[PDF](418.99KB)
Spatial propagation for a parabolic system with multiple species competing for single resource
Zhiguo Wang, Hua Nie and Jianhua Wu
2018doi: 10.3934/dcdsb.2018237 +[Abstract](282) +[HTML](266) +[PDF](537.12KB)
Swarming in domains with boundaries: Approximation and regularization by nonlinear diffusion
Razvan C. Fetecau, Mitchell Kovacic and Ihsan Topaloglu
2018doi: 10.3934/dcdsb.2018238 +[Abstract](325) +[HTML](242) +[PDF](1341.85KB)
Spreading-vanishing dichotomy in information diffusion in online social networks with intervention
Jingli Ren, Dandan Zhu and Haiyan Wang
2018doi: 10.3934/dcdsb.2018240 +[Abstract](412) +[HTML](175) +[PDF](3790.08KB)
Periodic attractors of nonautonomous flat-topped tent systems
Luís Silva
2018doi: 10.3934/dcdsb.2018243 +[Abstract](284) +[HTML](199) +[PDF](315.98KB)
Evolutionarily stable dispersal strategies in a two-patch advective environment
Jing-Jing Xiang and Yihao Fang
2018doi: 10.3934/dcdsb.2018245 +[Abstract](256) +[HTML](200) +[PDF](444.2KB)
Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains
Xiaobin Yao, Qiaozhen Ma and Tingting Liu
2018doi: 10.3934/dcdsb.2018247 +[Abstract](361) +[HTML](219) +[PDF](501.98KB)
Convergence rates of solutions for a two-species chemotaxis-Navier-Stokes sytstem with competitive kinetics
Hai-Yang Jin and Tian Xiang
2018doi: 10.3934/dcdsb.2018249 +[Abstract](327) +[HTML](211) +[PDF](526.21KB)
Smoothing dynamics of the non-autonomous stochastic Fitzhugh-Nagumo system on $\mathbb{R}^N$ driven by multiplicative noises
Wenqiang Zhao
2018doi: 10.3934/dcdsb.2018251 +[Abstract](368) +[HTML](248) +[PDF](461.94KB)
A randomized Milstein method for stochastic differential equations with non-differentiable drift coefficients
Raphael Kruse and Yue Wu
2018doi: 10.3934/dcdsb.2018253 +[Abstract](339) +[HTML](206) +[PDF](608.47KB)
Numerical methods for PDE models related to pricing and expected lifetime of an extraction project under uncertainty
María Suárez-Taboada and Carlos Vázquez
2018doi: 10.3934/dcdsb.2018254 +[Abstract](388) +[HTML](207) +[PDF](650.04KB)
Lyapunov type inequalities for Hammerstein integral equations and applications to population dynamics
Kunquan Lan and Wei Lin
2018doi: 10.3934/dcdsb.2018256 +[Abstract](230) +[HTML](194) +[PDF](502.25KB)
Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness
Yejuan Wang and Lin Yang
2018doi: 10.3934/dcdsb.2018257 +[Abstract](216) +[HTML](131) +[PDF](490.61KB)
Confinement of a hot temperature patch in the modified SQG model
Roberto Garra
2018doi: 10.3934/dcdsb.2018258 +[Abstract](172) +[HTML](125) +[PDF](320.99KB)
Oscillations and asymptotic convergence for a delay differential equation modeling platelet production
Loïs Boullu, Mostafa Adimy, Fabien Crauste and Laurent Pujo-Menjouet
2018doi: 10.3934/dcdsb.2018259 +[Abstract](188) +[HTML](115) +[PDF](591.42KB)
Asymptotics of the Lebowitz-Rubinow-Rotenberg model of population development
Adam Gregosiewicz
2018doi: 10.3934/dcdsb.2018260 +[Abstract](216) +[HTML](125) +[PDF](641.03KB)
Symmetries of nonlinear vibrations in tetrahedral molecular configurations
Irina Berezovik, Carlos García-Azpeitia and Wieslaw Krawcewicz
2018doi: 10.3934/dcdsb.2018261 +[Abstract](265) +[HTML](127) +[PDF](274.11KB)
Unique continuation property for stochastic nonclassical diffusion equations and stochastic linearized Benjamin-Bona-Mahony equations
Peng Gao
2018doi: 10.3934/dcdsb.2018262 +[Abstract](191) +[HTML](121) +[PDF](354.81KB)
Global eradication for spatially structured populations by regional control
Sebastian Aniţa, Vincenzo Capasso and Ana-Maria Moşneagu
2018doi: 10.3934/dcdsb.2018263 +[Abstract](194) +[HTML](133) +[PDF](466.08KB)
Stability and bifurcation in an age-structured model with stocking rate and time delays
Shengqin Xu, Chuncheng Wang and Dejun Fan
2018doi: 10.3934/dcdsb.2018264 +[Abstract](374) +[HTML](166) +[PDF](471.73KB)
On the long-time behaviour of age and trait structured population dynamics
Tristan Roget
2018doi: 10.3934/dcdsb.2018265 +[Abstract](203) +[HTML](121) +[PDF](578.84KB)
Optimal control problems for the Gompertz model under the Norton-Simon hypothesis in chemotherapy
Luis A. Fernández and Cecilia Pola
2018doi: 10.3934/dcdsb.2018266 +[Abstract](268) +[HTML](123) +[PDF](616.77KB)
Global solution and decay rate for a reduced gravity two and a half layer model
Yongming Liu and Lei Yao
2018doi: 10.3934/dcdsb.2018267 +[Abstract](207) +[HTML](153) +[PDF](262.77KB)
Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study
Tomás Caraballo, Renato Colucci and Luca Guerrini
2018doi: 10.3934/dcdsb.2018268 +[Abstract](224) +[HTML](140) +[PDF](1025.84KB)
Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains
Chia-Yu Hsieh
2018doi: 10.3934/dcdsb.2018269 +[Abstract](226) +[HTML](126) +[PDF](450.71KB)
Nondegenerate multistationarity in small reaction networks
Anne Shiu and Timo de Wolff
2018doi: 10.3934/dcdsb.2018270 +[Abstract](170) +[HTML](122) +[PDF](413.58KB)
Connected components of positive solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space
Ruyun Ma and Man Xu
2018doi: 10.3934/dcdsb.2018271 +[Abstract](186) +[HTML](143) +[PDF](444.31KB)
Long time behavior of fractional impulsive stochastic differential equations with infinite delay
Jiaohui Xu and Tomás Caraballo
2018doi: 10.3934/dcdsb.2018272 +[Abstract](294) +[HTML](136) +[PDF](547.29KB)
H2-stability of some second order fully discrete schemes for the Navier-Stokes equations
Yinnian He, Pengzhan Huang and Jian Li
2018doi: 10.3934/dcdsb.2018273 +[Abstract](251) +[HTML](144) +[PDF](398.58KB)
Immunosuppressant treatment dynamics in renal transplant recipients: an iterative modeling approach
Neha Murad, H. T. Tran, H. T. Banks, R. A. Everett and Eric S. Rosenberg
2018doi: 10.3934/dcdsb.2018274 +[Abstract](214) +[HTML](127) +[PDF](2017.44KB)
Distribution profiles in gene transcription activated by the cross-talking pathway
Feng Jiao, Qiwen Sun, Genghong Lin and Jianshe Yu
2018doi: 10.3934/dcdsb.2018275 +[Abstract](179) +[HTML](115) +[PDF](764.57KB)
Convergences of asymptotically autonomous pullback attractors towards semigroup attractors
Hongyong Cui
2018doi: 10.3934/dcdsb.2018276 +[Abstract](204) +[HTML](112) +[PDF](475.92KB)
Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems
Victor Kozyakin
2018doi: 10.3934/dcdsb.2018277 +[Abstract](275) +[HTML](128) +[PDF](532.88KB)
On asymptotically autonomous dynamics for multivalued evolution problems
Jacson Simsen and Mariza Stefanello Simsen
2018doi: 10.3934/dcdsb.2018278 +[Abstract](180) +[HTML](122) +[PDF](330.5KB)
Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping
Daniel Pardo, José Valero and Ángel Giménez
2018doi: 10.3934/dcdsb.2018279 +[Abstract](214) +[HTML](151) +[PDF](4075.25KB)
Modeling and analysis of random and stochastic input flows in the chemostat model
Tomás Caraballo, Maria-José Garrido-Atienza, Javier López-de-la-Cruz and Alain Rapaport
2018doi: 10.3934/dcdsb.2018280 +[Abstract](223) +[HTML](134) +[PDF](572.67KB)
On the finite-time Bhat-Bernstein feedbacks for the strings connected by point mass
Ghada Ben Belgacem and Chaker Jammazi
2018doi: 10.3934/dcdsb.2018286 +[Abstract](323) +[HTML](207) +[PDF](491.06KB)
Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques
Partha Guha and Indranil Mukherjee
2018doi: 10.3934/dcdsb.2018287 +[Abstract](296) +[HTML](192) +[PDF](391.27KB)
Convex geometry of the carrying simplex for the May-Leonard map
Stephen Baigent
2018doi: 10.3934/dcdsb.2018288 +[Abstract](267) +[HTML](244) +[PDF](925.86KB)
A comparison of deterministic and stochastic predator-prey models with disease in the predator
Hongxiao Hu, Liguang Xu and Kai Wang
2018doi: 10.3934/dcdsb.2018289 +[Abstract](143) +[HTML](135) +[PDF](2904.05KB)
A note on the convergence of the solution of the Novikov equation
Giuseppe Maria Coclite and Lorenzo di Ruvo
2018doi: 10.3934/dcdsb.2018290 +[Abstract](171) +[HTML](99) +[PDF](479.88KB)
Dynamical behaviors of stochastic type K monotone Lotka-Volterra systems
Dejun Fan, Xiaoyu Yi, Ling Xia and Jingliang Lv
2018doi: 10.3934/dcdsb.2018291 +[Abstract](145) +[HTML](90) +[PDF](320.52KB)
Global analysis of a stochastic TB model with vaccination and treatment
Tao Feng and Zhipeng Qiu
2018doi: 10.3934/dcdsb.2018292 +[Abstract](201) +[HTML](115) +[PDF](977.46KB)
Polynomial maps with hidden complex dynamics
Xu Zhang and Guanrong Chen
2018doi: 10.3934/dcdsb.2018293 +[Abstract](135) +[HTML](133) +[PDF](631.29KB)
Discontinuous phenomena in bioreactor system
Hany A. Hosham and Eman D Abou Elela
2018doi: 10.3934/dcdsb.2018294 +[Abstract](187) +[HTML](134) +[PDF](1133.33KB)
$ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity
Mengyao Ding and Sining Zheng
2018doi: 10.3934/dcdsb.2018295 +[Abstract](136) +[HTML](83) +[PDF](432.21KB)
Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises
Min Niu and Bin Xie
2018doi: 10.3934/dcdsb.2018296 +[Abstract](131) +[HTML](85) +[PDF](445.54KB)
Analysis and computation of some tumor growth models with nutrient: From cell density models to free boundary dynamics
Jian-Guo Liu, Min Tang, Li Wang and Zhennan Zhou
2018doi: 10.3934/dcdsb.2018297 +[Abstract](156) +[HTML](82) +[PDF](12121.03KB)
The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence
Wuyuan Jiang
2018doi: 10.3934/dcdsb.2018298 +[Abstract](136) +[HTML](77) +[PDF](391.71KB)
Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling
Pavel Krejčí and Giselle A. Monteiro
2018doi: 10.3934/dcdsb.2018299 +[Abstract](135) +[HTML](78) +[PDF](377.87KB)
Uniqueness of traveling front solutions for the Lotka-Volterra system in the weak competition case
Yang Wang and Xiong Li
2018doi: 10.3934/dcdsb.2018300 +[Abstract](133) +[HTML](105) +[PDF](324.15KB)
On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system
Shixing Li and Dongming Yan
2018doi: 10.3934/dcdsb.2018301 +[Abstract](144) +[HTML](83) +[PDF](321.41KB)
Attractivity of saturated equilibria for Lotka-Volterra systems with infinite delays and feedback controls
Yoshiaki Muroya and Teresa Faria
2018doi: 10.3934/dcdsb.2018302 +[Abstract](148) +[HTML](77) +[PDF](521.53KB)
Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals
Markus Böhm and Björn Schmalfuss
2018doi: 10.3934/dcdsb.2018303 +[Abstract](147) +[HTML](77) +[PDF](511.78KB)
Interlocked multi-node positive and negative feedback loops facilitate oscillations
Qingqing Li and Tianshou Zhou
2018doi: 10.3934/dcdsb.2018304 +[Abstract](178) +[HTML](98) +[PDF](1306.24KB)
On the backward uniqueness of the stochastic primitive equations with additive noise
Boling Guo and Guoli Zhou
2018doi: 10.3934/dcdsb.2018305 +[Abstract](136) +[HTML](90) +[PDF](451.15KB)
Bifurcation solutions of Gross-Pitaevskii equations for spin-1 Bose-Einstein condensates
Dong Deng and Ruikuan Liu
2018doi: 10.3934/dcdsb.2018306 +[Abstract](141) +[HTML](104) +[PDF](465.97KB)
Smoothness of density for stochastic differential equations with Markovian switching
Yaozhong Hu, David Nualart, Xiaobin Sun and Yingchao Xie
2018doi: 10.3934/dcdsb.2018307 +[Abstract](151) +[HTML](90) +[PDF](366.74KB)
On the Cahn-Hilliard/Allen-Cahn equations with singular potentials
Alain Miranville, Wafa Saoud and Raafat Talhouk
2018doi: 10.3934/dcdsb.2018308 +[Abstract](142) +[HTML](123) +[PDF](427.04KB)
Invariance principle in the singular perturbations limit
Zvi Artstein
2018doi: 10.3934/dcdsb.2018309 +[Abstract](162) +[HTML](133) +[PDF](325.88KB)
Pollution control for switching diffusion models: Approximation methods and numerical results
Caojin Zhang, George Yin, Qing Zhang and Le Yi Wang
2018doi: 10.3934/dcdsb.2018310 +[Abstract](149) +[HTML](91) +[PDF](4313.11KB)
Existence of positive solutions of an elliptic equation with local and nonlocal variable diffusion coefficient
Giovany M. Figueiredo, Tarcyana S. Figueiredo-Sousa, Cristian Morales-Rodrigo and Antonio Suárez
2018doi: 10.3934/dcdsb.2018311 +[Abstract](176) +[HTML](98) +[PDF](424.75KB)
Mild solutions to the time fractional Navier-Stokes delay differential inclusions
Yejuan Wang and Tongtong Liang
2018doi: 10.3934/dcdsb.2018312 +[Abstract](142) +[HTML](107) +[PDF](540.79KB)
The Vlasov-Navier-Stokes equations as a mean field limit
Franco Flandoli, Marta Leocata and Cristiano Ricci
2018doi: 10.3934/dcdsb.2018313 +[Abstract](154) +[HTML](87) +[PDF](471.47KB)
A new proof of the competitive exclusion principle in the chemostat
Alain Rapaport and Mario Veruete
2018doi: 10.3934/dcdsb.2018314 +[Abstract](127) +[HTML](81) +[PDF](319.59KB)
Uniqueness and traveling waves in a cell motility model
Matthew S. Mizuhara and Peng Zhang
2018doi: 10.3934/dcdsb.2018315 +[Abstract](135) +[HTML](82) +[PDF](936.62KB)
Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation
Jean-Frédéric Gerbeau and Benoit Perthame
2001, 1(1) : 89-102 doi: 10.3934/dcdsb.2001.1.89 +[Abstract](1779) +[PDF](239.9KB) Cited By(102)
Optimal control of treatments in a two-strain tuberculosis model
E. Jung, Suzanne Lenhart and Z. Feng
2002, 2(4) : 473-482 doi: 10.3934/dcdsb.2002.2.473 +[Abstract](1549) +[PDF](139.6KB) Cited By(92)
Analysis of upscaling absolute permeability
X.H. Wu, Y. Efendiev and Thomas Y. Hou
2002, 2(2) : 185-204 doi: 10.3934/dcdsb.2002.2.185 +[Abstract](1150) +[PDF](226.2KB) Cited By(71)
Fisher waves in an epidemic model
Xiao-Qiang Zhao and Wendi Wang
2004, 4(4) : 1117-1128 doi: 10.3934/dcdsb.2004.4.1117 +[Abstract](1216) +[PDF](197.7KB) Cited By(62)
Optimal control of vector-borne diseases: Treatment and prevention
Kbenesh Blayneh, Yanzhao Cao and Hee-Dae Kwon
2009, 11(3) : 587-611 doi: 10.3934/dcdsb.2009.11.587 +[Abstract](1674) +[PDF](596.7KB) Cited By(59)
Dynamics of a HIV-1 Infection model with cell-mediated immune response and intracellular delay
Huiyan Zhu and Xingfu Zou
2009, 12(2) : 511-524 doi: 10.3934/dcdsb.2009.12.511 +[Abstract](1255) +[PDF](264.3KB) Cited By(59)
Modelling and analysis of integrated pest management strategy
Sanyi Tang and Lansun Chen
2004, 4(3) : 759-768 doi: 10.3934/dcdsb.2004.4.759 +[Abstract](1523) +[PDF](161.3KB) Cited By(49)
Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian
Adam M. Oberman
2008, 10(1) : 221-238 doi: 10.3934/dcdsb.2008.10.221 +[Abstract](1139) +[PDF](2040.6KB) Cited By(48)
A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms
Àlex Haro and Rafael de la Llave
2006, 6(6) : 1261-1300 doi: 10.3934/dcdsb.2006.6.1261 +[Abstract](708) +[PDF](479.5KB) Cited By(46)
Infinite propagation speed for a two component Camassa-Holm equation
David Henry
2009, 12(3) : 597-606 doi: 10.3934/dcdsb.2009.12.597 +[Abstract](1095) +[PDF](181.0KB) Cited By(46)
Positive solutions to the unstirred chemostat model with Crowley-Martin functional response
Hai-Xia Li, Jian-Hua Wu, Yan-Ling Li and Chun-An Liu
2018, 23(8) : 2951-2966 doi: 10.3934/dcdsb.2017128 +[Abstract](1825) +[HTML](691) +[PDF](481.89KB) PDF Downloads(297)
Fractional Navier-Stokes equations
Jan W. Cholewa and Tomasz Dlotko
2018, 23(8) : 2967-2988 doi: 10.3934/dcdsb.2017149 +[Abstract](2690) +[HTML](1055) +[PDF](566.06KB) PDF Downloads(271)
Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity
Zhenguo Bai and Tingting Zhao
2018, 23(10) : 4063-4085 doi: 10.3934/dcdsb.2018126 +[Abstract](938) +[HTML](590) +[PDF](519.85KB) PDF Downloads(217)
A stochastic SIRI epidemic model with Lévy noise
Badr-eddine Berrhazi, Mohamed El Fatini, Tomás Caraballo and Roger Pettersson
2018, 23(6) : 2415-2431 doi: 10.3934/dcdsb.2018057 +[Abstract](1708) +[HTML](775) +[PDF](2371.8KB) PDF Downloads(212)
On a free boundary problem for a nonlocal reaction-diffusion model
Jia-Feng Cao, Wan-Tong Li and Meng Zhao
2018, 23(10) : 4117-4139 doi: 10.3934/dcdsb.2018128 +[Abstract](843) +[HTML](523) +[PDF](474.87KB) PDF Downloads(178)
Dynamics of a diffusive prey-predator system with strong Allee effect growth rate and a protection zone for the prey
Na Min and Mingxin Wang
2018, 23(4) : 1721-1737 doi: 10.3934/dcdsb.2018073 +[Abstract](1410) +[HTML](500) +[PDF](391.76KB) PDF Downloads(163)
Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays
Shihe Xu, Meng Bai and Fangwei Zhang
2018, 23(9) : 3535-3551 doi: 10.3934/dcdsb.2017213 +[Abstract](62027) +[HTML](877) +[PDF](416.76KB) PDF Downloads(162)
Asymptotic behaviour of the solutions to a virus dynamics model with diffusion
Toru Sasaki and Takashi Suzuki
2018, 23(2) : 525-541 doi: 10.3934/dcdsb.2017206 +[Abstract](1464) +[HTML](358) +[PDF](690.66KB) PDF Downloads(161)
Pullback attractors for a class of non-autonomous thermoelastic plate systems
Flank D. M. Bezerra, Vera L. Carbone, Marcelo J. D. Nascimento and Karina Schiabel
2018, 23(9) : 3553-3571 doi: 10.3934/dcdsb.2017214 +[Abstract](1389) +[HTML](726) +[PDF](461.59KB) PDF Downloads(157)
Long term dynamics of second order-in-time stochastic evolution equations with state-dependent delay
Igor Chueshov, Peter E. Kloeden and Meihua Yang
2018, 23(3) : 991-1009 doi: 10.3934/dcdsb.2018139 +[Abstract](1122) +[HTML](390) +[PDF](479.0KB) PDF Downloads(151)

2017  Impact Factor: 0.972




Email Alert

[Back to Top]