ISSN:
 1930-5346

eISSN:
 1930-5338

All Issues

Volume 11, 2017

Volume 10, 2016

Volume 9, 2015

Volume 8, 2014

Volume 7, 2013

Volume 6, 2012

Volume 5, 2011

Volume 4, 2010

Volume 3, 2009

Volume 2, 2008

Volume 1, 2007

Advances in Mathematics of Communications (AMC) publishes original research papers of the highest quality in all areas of mathematics and computer science which are relevant to applications in communications technology. For this reason, submissions from many areas of mathematics are invited, provided these show a high level of originality, new techniques, an innovative approach, novel methodologies, or otherwise a high level of depth and sophistication. Any work that does not conform to these standards will be rejected.

Areas covered include coding theory, cryptology, combinatorics, finite geometry, algebra and number theory, but are not restricted to these. This journal also aims to cover the algorithmic and computational aspects of these disciplines. Hence, all mathematics and computer science contributions of appropriate depth and relevance to the above mentioned applications in communications technology are welcome.

More detailed indication of the journal's scope is given by the subject interests of the members of the board of editors.

All papers will undergo a thorough peer reviewing process unless the subject matter of the paper does not fit the journal; in this case, the author will be informed promptly. Every effort will be made to secure a decision in three months and to publish accepted papers within six months.

  • AIMS is a member of COPE. All AIMS journals adhere to the publication ethics and malpractice policies outlined by COPE.
  • Publishes 4 issues a year in February, May, August and November.
  • Publishes online only.
  • Indexed in Science Citation Index E, CompuMath Citation Index, Current Contents/Physics, Chemical, & Earth Sciences, INSPEC, Mathematical Reviews, MathSciNet, PASCAL/CNRS, Scopus, Web of Science, Zentralblatt MATH and dblp: computer science bibliography.
  • Archived in Portico and CLOCKSS.
  • Shandong University is a founding institution of AMC.
  • AMC is a publication of the American Institute of Mathematical Sciences. All rights reserved.

Note: “Most Cited” is by Cross-Ref , and “Most Downloaded” is based on available data in the new website.

Select all articles

Export/Reference:

Duursma's reduced polynomial
Azniv Kasparian  and  Ivan Marinov 
2017, 11(4) : 647-669 doi: 10.3934/amc.2017048 +[Abstract](111) +[HTML](84) +[PDF](439.95KB)
Abstract:

The weight distribution \begin{document} $\{ \mathcal{W}_C^{(w)} \} _{w=0} ^n$ \end{document} of a linear code \begin{document} $C \subset {\mathbb F}_q^n$ \end{document} is put in an explicit bijective correspondence with Duursma's reduced polynomial \begin{document} $D_C(t) ∈ {\mathbb Q}[t]$ \end{document} of \begin{document} $C$ \end{document}. We prove that the Riemann Hypothesis Analogue for a linear code \begin{document} $C$ \end{document} requires the formal self-duality of \begin{document} $C$ \end{document}. Duursma's reduced polynomial \begin{document} $D_F(t) ∈ {\mathbb Z}[t]$ \end{document} of the function field \begin{document} $F = {\mathbb F}_q(X)$ \end{document} of a curve \begin{document} $X$ \end{document} of genus \begin{document} $g$ \end{document} over \begin{document} ${\mathbb F}_q$ \end{document} is shown to provide a generating function \begin{document} $\frac{D_F(t)}{(1-t)(1-qt)} = \sum\limits _{i=0} ^{∞} \mathcal{B}_i t^{i}$ \end{document} for the numbers \begin{document} $\mathcal{B}_i$ \end{document} of the effective divisors of degree \begin{document} $i ≥0$ \end{document} of a virtual function field of a curve of genus \begin{document} $g-1$ \end{document} over \begin{document} ${\mathbb F}_q$ \end{document}.

A new nonbinary sequence family with low correlation and large size
Hua Liang  , Wenbing Chen  , Jinquan Luo  and  Yuansheng Tang 
2017, 11(4) : 671-691 doi: 10.3934/amc.2017049 +[Abstract](87) +[HTML](68) +[PDF](457.09KB)
Abstract:

Let \begin{document} $p$ \end{document} be an odd prime, \begin{document} $n≥q3$ \end{document} and \begin{document} $k$ \end{document} positive integers with \begin{document} $e=\gcd(n,k)$ \end{document}. In this paper, a new family \begin{document} $\mathcal{S}$ \end{document} of \begin{document} $p$ \end{document}-ary sequences with period \begin{document} $N=p^n-1$ \end{document} is proposed. The sequences in \begin{document} $\mathcal{S}$ \end{document} are constructed by adding a \begin{document} $p$ \end{document}-ary sequence to its two decimated sequences with different phase shifts. The correlation distribution among sequences in \begin{document} $\mathcal{S}$ \end{document} is completely determined. It is shown that the maximum magnitude of nontrivial correlations of \begin{document} $\mathcal{S}$ \end{document} is upper bounded by \begin{document} $p^e\sqrt{N+1}+1$ \end{document}, and the family size of \begin{document} $\mathcal{S}$ \end{document} is \begin{document} $N^2$ \end{document}. Our sequence family has a large family size and low correlation.

On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$
Hua Liang  , Jinquan Luo  and  Yuansheng Tang 
2017, 11(4) : 693-703 doi: 10.3934/amc.2017050 +[Abstract](165) +[HTML](52) +[PDF](370.98KB)
Abstract:

For two odd integers \begin{document} $l,k$ \end{document} with \begin{document} $0<l<k$ \end{document} and \begin{document} $\gcd(l,k)=1$ \end{document}, let \begin{document} $m=2k$ \end{document} and \begin{document} $d=\frac{2^{lk}+1}{2^l+1}$ \end{document}. In this paper, we study the cross-correlation between a binary \begin{document} $m$ \end{document}-sequence \begin{document} $(s_t)$ \end{document} of length \begin{document} $2^m-1$ \end{document} and its \begin{document} $d$ \end{document}-decimated sequences \begin{document} $(s_{dt+u}), 0≤q u<\frac{2^k+1}{3}.$ \end{document} It is shown that the maximum magnitude of cross-correlation values is \begin{document} $2^{\frac{m}{2}+1}+1.$ \end{document} Moreover, a new sequence family with maximum correlation magnitude \begin{document} $2^{\frac{m}{2}+1}+1$ \end{document} and family size \begin{document} $2^{\frac{m}{2}}$ \end{document} is proposed.

Constant dimension codes from Riemann-Roch spaces
Daniele Bartoli  , Matteo Bonini  and  Massimo Giulietti 
2017, 11(4) : 705-713 doi: 10.3934/amc.2017051 +[Abstract](121) +[HTML](65) +[PDF](318.1KB)
Abstract:

Some families of constant dimension codes arising from Riemann-Roch spaces associated with particular divisors of a curve \begin{document}$\mathcal{X}$\end{document} are constructed. These families are generalizations of the one constructed by Hansen.

An active attack on a distributed Group Key Exchange system
Mohamed Baouch  , Juan Antonio López-Ramos  , Blas Torrecillas  and  Reto Schnyder 
2017, 11(4) : 715-717 doi: 10.3934/amc.2017052 +[Abstract](87) +[HTML](57) +[PDF](234.29KB)
Abstract:

In this work, we introduce an active attack on a Group Key Exchange protocol by Burmester and Desmedt. The attacker obtains a copy of the shared key, which is created in a collaborative manner with the legal users in a communication group.

Modular lattices from a variation of construction a over number fields
Xiaolu Hou  and  Frédérique Oggier 
2017, 11(4) : 719-745 doi: 10.3934/amc.2017053 +[Abstract](89) +[HTML](53) +[PDF](564.22KB)
Abstract:

We consider a variation of Construction A of lattices from linear codes based on two classes of number fields, totally real and CM Galois number fields. We propose a generic construction with explicit generator and Gram matrices, then focus on modular and unimodular lattices, obtained in the particular cases of totally real, respectively, imaginary, quadratic fields. Our motivation comes from coding theory, thus some relevant properties of modular lattices, such as minimal norm, theta series, kissing number and secrecy gain are analyzed. Interesting lattices are exhibited.

On the classification of $\mathbb{Z}_4$-codes
Makoto Araya  , Masaaki Harada  , Hiroki Ito  and  Ken Saito 
2017, 11(4) : 747-756 doi: 10.3934/amc.2017054 +[Abstract](165) +[HTML](51) +[PDF](331.83KB)
Abstract:

In this note, we study the classification of \begin{document} $\mathbb{Z}_4$ \end{document}-codes. For some special cases \begin{document} $(k_1,k_2)$ \end{document}, by hand, we give a classification of \begin{document} $\mathbb{Z}_4$ \end{document}-codes of length \begin{document} $n$ \end{document} and type \begin{document} $4^{k_1}2^{k_2}$ \end{document} satisfying a certain condition. Our exhaustive computer search completes the classification of \begin{document} $\mathbb{Z}_4$ \end{document}-codes of lengths up to \begin{document} $7$ \end{document}.

On primitive constant dimension codes and a geometrical sunflower bound
Roland D. Barrolleta  , Emilio Suárez-Canedo  , Leo Storme  and  Peter Vandendriessche 
2017, 11(4) : 757-765 doi: 10.3934/amc.2017055 +[Abstract](173) +[HTML](51) +[PDF](364.26KB)
Abstract:

In this paper we study subspace codes with constant intersection dimension (SCIDs). We investigate the largest possible dimension spanned by such a code that can yield non-sunflower codes, and classify the examples attaining equality in that bound as one of two infinite families. We also construct a new infinite family of primitive SCIDs.

On the performance of optimal double circulant even codes
T. Aaron Gulliver  and  Masaaki Harada 
2017, 11(4) : 767-775 doi: 10.3934/amc.2017056 +[Abstract](73) +[HTML](52) +[PDF](327.39KB)
Abstract:

In this note, we investigate the performance of optimal double circulant even codes which are not self-dual, as measured by the decoding error probability in bounded distance decoding. To achieve this, we classify the optimal double circulant even codes that are not self-dual which have the smallest weight distribution for lengths up to 72. We also give some restrictions on the weight distributions of (extremal) self-dual [54, 27, 10] codes with shadows of minimum weight 3. Finally, we consider the performance of extremal self-dual codes of lengths 88 and 112.

Counting generalized Reed-Solomon codes
Peter Beelen  , David Glynn  , Tom Høholdt  and  Krishna Kaipa 
2017, 11(4) : 777-790 doi: 10.3934/amc.2017057 +[Abstract](75) +[HTML](49) +[PDF](341.0KB)
Abstract:

In this article we count the number of $[n, k]$ generalized Reed-Solomon (GRS) codes, including the codes coming from a non-degenerate conic plus nucleus. We compare our results with known formulae for the number of $[n, 3]$ MDS codes with $n=6, 7, 8, 9$.

Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$
Karim Samei  and  Arezoo Soufi 
2017, 11(4) : 791-804 doi: 10.3934/amc.2017058 +[Abstract](74) +[HTML](318) +[PDF](383.45KB)
Abstract:

The purpose of this paper is to study the structure of quadratic residue codes over the ring \begin{document} $R=\mathbb{F}_{p^r}+u_1\mathbb{F}_{p^r}+u_2 \mathbb{F}_{p^r}+...+u_t \mathbb{F}_{p^r}$ \end{document}, where \begin{document} $r, t ≥ 1$ \end{document} and \begin{document} $p$ \end{document} is a prime number. First, we survey known results on quadratic residue codes over the field \begin{document} $\mathbb{F}_{p^r}$ \end{document} and give general properties with quadratic residue codes over \begin{document} $R$ \end{document}. We introduce the Gray map from \begin{document} $R$ \end{document} to \begin{document} $\mathbb{F}^{t+1}_{p^r}$ \end{document} and study more details about the quadratic residue codes over the ring \begin{document} $R$ \end{document} for \begin{document} $p=2, 3$ \end{document}. Finally, we obtain a number of Hermitian self-dual codes over \begin{document} $R$ \end{document} in the following two cases, where \begin{document} $t$ \end{document} is an odd number; the first case, when \begin{document} $p=2$ \end{document} and \begin{document} $r$ \end{document} is an even number or \begin{document} $r=1$ \end{document}, the second case, when \begin{document} $p=3$ \end{document} and \begin{document} $r$ \end{document} is an even number.

Analysis of Hidden Number Problem with Hidden Multiplier
Santanu Sarkar 
2017, 11(4) : 805-811 doi: 10.3934/amc.2017059 +[Abstract](87) +[HTML](54) +[PDF](154.57KB)
Abstract:

In Crypto 1996, the Hidden Number Problem was introduced by Boneh and Venkatesan. Howgrave-Graham, Nguyen and Shparlinski (Mathematics of Computation 2003) generalized this problem and called it Hidden Number Problem with Hidden Multiplier (HNPHM). It has application in security analysis of timed-release crypto. They proposed a polynomial time algorithm to solve HNPHM. They showed that one can solve it if absolute error is less than \begin{document} $m^{0.20}$ \end{document} for some positive integer \begin{document} $m$ \end{document}. They improved this bound up to \begin{document} $m^{0.25}$ \end{document} heuristically. It was also proved that one can not solve HNPHM if error is larger than \begin{document} $m^{0.5}$ \end{document}. In this paper, we show that one can solve HNPHM in polynomial time heuristically if error is bounded by \begin{document} $m^{0.5}$ \end{document}.

Capacity of random channels with large alphabets
Tobias Sutter  , David Sutter  and  John Lygeros 
2017, 11(4) : 813-835 doi: 10.3934/amc.2017060 +[Abstract](83) +[HTML](49) +[PDF](539.82KB)
Abstract:

We consider discrete memoryless channels with input alphabet size \begin{document} $n$ \end{document} and output alphabet size \begin{document} $m$ \end{document}, where \begin{document} $m=\left\lceil{γ n}\right\rceil$ \end{document} for some constant \begin{document} $γ>0$ \end{document}. The channel transition matrix consists of entries that, before being normalized, are independent and identically distributed nonnegative random variables \begin{document} $V$ \end{document} and such that \begin{document} $\mathbb{E}{(V \log V)^2}<∞$ \end{document}. We prove that in the limit as \begin{document} $n{\to }∞$ \end{document} the capacity of such a channel converges to \begin{document} $\text{Ent}(V) / \mathbb{E}[V]$ \end{document} almost surely and in \begin{document} $\text{L}^{2}$ \end{document}, where \begin{document} $\text{Ent}(V):= \mathbb{E}[{V\log V}]-\mathbb{E}[{V}]\log \mathbb{E}[{V}]$ \end{document} denotes the entropy of \begin{document} $V$ \end{document}. We further show that, under slightly different model assumptions, the capacity of these random channels converges to this asymptotic value exponentially in \begin{document} $n$ \end{document}. Finally, we present an application in the context of Bayesian optimal experiment design.

Three basic questions on Boolean functions
Claude Carlet  and  Serge Feukoua 
2017, 11(4) : 837-855 doi: 10.3934/amc.2017061 +[Abstract](81) +[HTML](173) +[PDF](469.69KB)
Abstract:

In a first part of this paper, we investigate those Boolean functions satisfying two apparently related, but in fact distinct conditions concerning the algebraic degree:

1. we study those Boolean functions \begin{document} $f$ \end{document} whose restrictions to all affine hyperplanes have the same algebraic degree (equal to \begin{document} $deg(f)$ \end{document}, the algebraic degree of \begin{document} $f$ \end{document}),

2. we study those functions whose derivatives \begin{document} $D_af(x)=f(x)+ f(x+a)$ \end{document}, \begin{document} $a≠ 0$ \end{document}, have all the same (optimal) algebraic degree \begin{document} $deg(f)-1$ \end{document}.

For determining to which extent these two questions are related, we find three classes of Boolean functions: the first class satisfies both conditions, the second class satisfies the first condition but not the second and the third class satisfies the second condition but not the first. We also give for any fixed positive integer \begin{document} $k$ \end{document} and for all integers \begin{document} $n$ \end{document}, \begin{document} $p$ \end{document}, \begin{document} $s$ \end{document} such that \begin{document} $p≥q k+1$ \end{document}, \begin{document} $s≥q k+1$ \end{document} and \begin{document} $n≥q ps$ \end{document}, a class (denoted by \begin{document} $C_{n,p,s}$ \end{document}) of functions whose restrictions to all \begin{document} $k$ \end{document}-codimensional affine subspaces of \begin{document} ${\Bbb F}_2^n$ \end{document} have the same algebraic degree as the function.

In a second part of the paper, we introduce the notion of second-order-bent function, whose second order derivatives \begin{document} $D_aD_bf(x)=f(x)+f(x+a)+f(x+b)+f(x+a+b)$ \end{document}, \begin{document} $a≠ 0, b≠ 0, a≠ b$ \end{document}, are all balanced. We exhibit an example in 3 variables and we prove that second-order-bent functions cannot exist if \begin{document} $n$ \end{document} is not congruent with 3 mod 4. We characterize second-order-bent functions by the Walsh transform, state some of their properties and prove the non existence of such functions for algebraic degree 3 when \begin{document} $n>3$ \end{document}. We leave open the question whether second-order-bent functions can exist for \begin{document} $n$ \end{document} larger than \begin{document} $3$ \end{document}.

A new almost perfect nonlinear function which is not quadratic
Yves Edel  and  Alexander Pott 
2009, 3(1) : 59-81 doi: 10.3934/amc.2009.3.59 +[Abstract](123) +[PDF](288.3KB) Cited By(41)
Skew constacyclic codes over Galois rings
Delphine Boucher  , Patrick Solé  and  Felix Ulmer 
2008, 2(3) : 273-292 doi: 10.3934/amc.2008.2.273 +[Abstract](142) +[PDF](247.3KB) Cited By(27)
A review of the available construction methods for Golomb rulers
Konstantinos Drakakis 
2009, 3(3) : 235-250 doi: 10.3934/amc.2009.3.235 +[Abstract](83) +[PDF](218.2KB) Cited By(22)
A survey of perfect codes
Olof Heden 
2008, 2(2) : 223-247 doi: 10.3934/amc.2008.2.223 +[Abstract](129) +[PDF](323.1KB) Cited By(21)
Public key cryptography based on semigroup actions
Gérard Maze  , Chris Monico  and  Joachim Rosenthal 
2007, 1(4) : 489-507 doi: 10.3934/amc.2007.1.489 +[Abstract](107) +[PDF](248.6KB) Cited By(21)
On the order bounds for one-point AG codes
Olav Geil  , Carlos Munuera  , Diego Ruano  and  Fernando Torres 
2011, 5(3) : 489-504 doi: 10.3934/amc.2011.5.489 +[Abstract](84) +[PDF](378.6KB) Cited By(17)
Geometric constructions of optimal optical orthogonal codes
T. L. Alderson  and  K. E. Mellinger 
2008, 2(4) : 451-467 doi: 10.3934/amc.2008.2.451 +[Abstract](121) +[PDF](239.2KB) Cited By(16)
Efficient implementation of elliptic curve cryptography in wireless sensors
Diego F. Aranha  , Ricardo Dahab  , Julio López  and  Leonardo B. Oliveira 
2010, 4(2) : 169-187 doi: 10.3934/amc.2010.4.169 +[Abstract](219) +[PDF](304.4KB) Cited By(15)
Linear nonbinary covering codes and saturating sets in projective spaces
Alexander A. Davydov  , Massimo Giulietti  , Stefano Marcugini  and  Fernanda Pambianco 
2011, 5(1) : 119-147 doi: 10.3934/amc.2011.5.119 +[Abstract](148) +[PDF](566.6KB) Cited By(14)
Gold and Kasami-Welch functions, quadratic forms, and bent functions
Jyrki Lahtonen  , Gary McGuire  and  Harold N. Ward 
2007, 1(2) : 243-250 doi: 10.3934/amc.2007.1.243 +[Abstract](135) +[PDF](125.4KB) Cited By(13)
Duursma's reduced polynomial
Azniv Kasparian  and  Ivan Marinov 
2017, 11(4) : 647-669 doi: 10.3934/amc.2017048 +[Abstract](111) +[HTML](84) +[PDF](439.95KB) PDF Downloads(31)
Constant dimension codes from Riemann-Roch spaces
Daniele Bartoli  , Matteo Bonini  and  Massimo Giulietti 
2017, 11(4) : 705-713 doi: 10.3934/amc.2017051 +[Abstract](121) +[HTML](65) +[PDF](318.1KB) PDF Downloads(20)
Three basic questions on Boolean functions
Claude Carlet  and  Serge Feukoua 
2017, 11(4) : 837-855 doi: 10.3934/amc.2017061 +[Abstract](81) +[HTML](173) +[PDF](469.69KB) PDF Downloads(20)
Recursive descriptions of polar codes
Noam Presman  and  Simon Litsyn 
2017, 11(1) : 1-65 doi: 10.3934/amc.2017001 +[Abstract](412) +[HTML](77) +[PDF](5941.51KB) PDF Downloads(19)
Some remarks on the construction of class polynomials
Elisavet Konstantinou  and  Aristides Kontogeorgis 
2011, 5(1) : 109-118 doi: 10.3934/amc.2011.5.109 +[Abstract](116) +[PDF](234.9KB) PDF Downloads(14)
\begin{document} $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$ \end{document}" >Quadratic residue codes over $\mathbb{F}_{p^r}+{u_1}\mathbb{F}_{p^r}+{u_2}\mathbb{F}_{p^r}+...+{u_t}\mathbb{F}_ {p^r}$
Karim Samei  and  Arezoo Soufi 
2017, 11(4) : 791-804 doi: 10.3934/amc.2017058 +[Abstract](74) +[HTML](318) +[PDF](383.45KB) PDF Downloads(14)
On primitive constant dimension codes and a geometrical sunflower bound
Roland D. Barrolleta  , Emilio Suárez-Canedo  , Leo Storme  and  Peter Vandendriessche 
2017, 11(4) : 757-765 doi: 10.3934/amc.2017055 +[Abstract](173) +[HTML](51) +[PDF](364.26KB) PDF Downloads(10)
A new nonbinary sequence family with low correlation and large size
Hua Liang  , Wenbing Chen  , Jinquan Luo  and  Yuansheng Tang 
2017, 11(4) : 671-691 doi: 10.3934/amc.2017049 +[Abstract](87) +[HTML](68) +[PDF](457.09KB) PDF Downloads(10)
On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$
Hua Liang  , Jinquan Luo  and  Yuansheng Tang 
2017, 11(4) : 693-703 doi: 10.3934/amc.2017050 +[Abstract](165) +[HTML](52) +[PDF](370.98KB) PDF Downloads(8)
Parity check systems of nonlinear codes over finite commutative Frobenius rings
Thomas Westerbäck 
2017, 11(3) : 409-427 doi: 10.3934/amc.2017035 +[Abstract](216) +[HTML](24) +[PDF](452.4KB) PDF Downloads(6)

2016  Impact Factor: 0.8

Editors

Referees

Librarians

Email Alert

[Back to Top]