Kinetic and Related Models (KRM)
 
Editors in Chief

Kazuo Aoki

kazuo.aoki.22v@st.kyoto-u.ac.jp

Mathematics Division, National Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan and Department of Mathematics, National Cheng Kung University, Tainan 70101, Taiwan

Molecular gas dynamics

Pierre Degond

pdegond@imperial.ac.uk

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Kinetic theory, nonlinear PDE’s, numerical analysis, modeling

Tong Yang

matyang@cityu.edu.hk

City University of Hong Kong, Dept. Math., Kowloon, Hong Kong, China

Mathematical theories of conservation laws and kinetic equations

Editorial Board

Radjesvarane Alexandre

radjesvarane.alexandre@paristech.fr

IRENAv, Research Institute French Naval Academy Ecole Navale 29240 BREST ARMEES, France

Kinetic equations, harmonic analysis, homogenization

Anton Arnold

anton.arnold@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstr. 8, A-1040 Vienna, Austria

Quantum models, kinetic theory

Guillaume Bal

gb2030@columbia.edu

Department of Applied Physics and Applied Mathematics (APAM), Columbia University, New York, NY 10027, USA

Kinetic models in random media, partial differential equations with random coefficients, inverse transport theory

Claude Bardos

claude.bardos@gmail.com

University Paris 6, Lab JL Lions, F-75252, Paris, France

Kinetic theory, macroscopic limits in classical and quantum dynamic, euler and navier stokes equations

Alexander V. Bobylev

alexander.bobylev@kau.se

Keldysh Institute of Applied Mathematics, RAS, 125047 Moscow, Russia

Kinetic theory

Yann Brenier

yann.brenier@math.polytechnique.fr

Ecole polytechnique, Centre de mathématiques Laurent Schwartz, 91128 Palaiseau Cedex, France

Vlasov type equations optimal transportation methods

Alberto Bressan

bressan@math.psu.edu

Department of Mathematics, Penn State University, USA

Partial differential equations and control theory

Eric Carlen

carlen@math.rutgers.edu

Department of Mathematics, Hill center Rutgers University, 110 Frelinghuysen Rd. Piscataway NJ 08854, USA

Probabilistic models, functional inequalities and anlytic methods in kinetic theory

José Antonio Carrillo

carrillo@imperial.ac.uk

Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom

Kinetic and related nonlinear PDEs: asymptotics, modelling and numerics

Hua Chen

chenhua@whu.edu.cn

School of Mathematics and Statistics Wuhan University, Wuhan 430072, China

Partial differential equations

Laurent Desvillettes

desvillettes@math.univ-paris-diderot.fr

Université Paris Diderot, IMJ-PRG, 8 place Aurélie Nemours 75013 Paris, France

Applied PDE and numerical analysis, kinetic theory

Miguel Escobedo

miguel.escobedo@ehu.es

Departamento de Matemáticas Universidad del País Vasco (UPV/EHU) Apartado 644, Bilbao 48080, Spain

Nonlinear pde`s- Asymptotic behaviour-Singularities

Raffaele Esposito

esposito@roma2.infn.it

M&MOCS - International Research Center on Mathematics and Mechanics of Complex Systems - Università dell’Aquila Palazzo Caetani, 04012 Cisterna di Latina, Italy

Kinetic theory, hydrodynamical limits, particle systems

Irene M. Gamba

gamba@math.utexas.edu

Department of Mathematics and Institute for Computational Engineering and Sciences, The University of Texas at Austin, 78712 Austin TX, USA

Nonlinear kinetic theory and PDE's, analysis and numerical methods

Francois Golse

golse@math.polytechnique.fr

Ecole polytechnique, Centre de mathématiques Laurent Schwartz, 91128 Palaiseau cedex, France

Mathematical analysis of kinetic models macroscopic limits for particle systems

Yan Guo

guoy@dam.brown.edu

Division of Applied Mathematics, Brown University, Providence, RI 02912, USA

Kinetic theory

Seung-Yeal Ha

syha@snu.ac.kr

Department of Mathematical Sciences, Seoul National University, Seoul, 151-747, Korea

Hyperbolic conservation laws, kinetic theory, modeling

Feimin Huang

fhuang@amt.ac.cn

Academy of Mathematics and System Sciences, Academia Sinica, Beijing 100190, China

Hyperbolic conservation laws and viscous conservation laws

Reinhard Illner

rillner@math.uvic.ca

Department of Mathematics and Statistics, University of Victoria, PO Box 3045 STN CSC, Victoria, B.C. Canada

Kinetic theory

Pierre-Emmanuel Jabin

pjabin@umd.edu

CSCAMM and Department of Mathematics, University of Maryland, College Park, MD 20742, USA

Kinetic equations, systems of particles, transport and advection equations

Shi Jin

jin@math.wisc.edu

Department of Mathematics University of Wisconsin-Madison Madison, WI 53706, USA

Numerical methods for hyperbolic systems and kinetic equations, computational high frequency waves

Ansgar Jüngel

juengel@tuwien.ac.at

Institute for Analysis and Scientific Computing, Vienna University of Technology Wiedner Hauptstr. 8-10, 1040 Wien, Austria

Kinetic models and diffusive limits, semiconductor and finance applications, numerics

Shuichi Kawashima

kawashim@math.kyushu-u.ac.jp

Faculty of Mathematics, Kyushu University, Fukuoka 812-8581, Japan

Partial differential equations

Axel Klar

klar@itwm.fraunhofer.de

TU Kaiserslautern, Erwin Schrödingerstr., 67663 Kaiserslautern, Germany

Numerical methods for transport equations, network models

C. David Levermore

lvrmr@math.umd.edu

Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742-2431, USA

Boltzmann equations, transport equations, transition regime models

Pierre-Louis Lions

lions@ceremade.dauphine.fr

I.F.D. Institut Finance Dauphine, Universite Paris Dauphine, Place du Marechal de Lattre De Tassigny 75775 Paris cedex 16, France

Applied mathematics, nonlinear partial differential equations

Chun Liu

liu@math.psu.edu

Department of Mathematics Penn State University, University Park, PA 16802, USA

Complex fluids, multiscale modeling

Tao Luo

taoluo@cityu.edu.hk

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China

Nonlinear partial differential equations and fluid dynamics

Peter Markowich

peter.markowich@univie.ac.at
P.A.Markowich@damtp.cam.ac.uk

Applied Mathematics, University of Cambridge, DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom and Mathematics, University of Vienna, Austria

Kinetic equations in semiconductors, nanotechnology and quantum physics

Yoshinori Morimoto

morimoto@math.h.kyoto-u.ac.jp

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, 606-8501, Japan

Partial differential equations, statistical mechanics

Barbara Niethammer

niethammer@iam.uni-bonn.de

Institut fuer Angewandte Mathematik, Endenicher Allee 60, 53115 Bonn, Germany

Kinetic models in materials science, coagulation-fragmentaion equations

Shinya Nishibata

shinya@is.titech.ac.jp

Tokyo Institute of Technology Department of Mathematical and Computing Sciences Graduate School of Information Science and Engineering 2-12-1-W8-32, O-okayama, Meguro-ku Tokyo 152-8552, Japan

Hyperbolic-elliptic systems of PDE, fluid equations, discrete Boltzmann equations

Anne Nouri

anne.nouri@univ-amu.fr

Laboratoire d'Analyse, Topologie et robabilités,Université d'Aix-Marseille I, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France

Kinetic theory

Lorenzo Pareschi

lorenzo.pareschi@unife.it

Department of Mathematics, University of Ferrara Via Machiavelli 35, 44100 Ferrara, Italy

Kinetic equations and nonlinear PDEs, numerical analysis

Benoit Perthame

Perthame@ann.jussieu.fr

Laboratoire J. L. Lions Université P. et M. urie BC187, 4, place Jussieu, F-75252 Paris cedex 5, France

Theory of kinetic equations, applications in biology

Paola Pietra

paola.pietra@imati.cnr.it

Istituto di Matematica Applicata, e Tecnologie Informatiche (IMATI) CNR, via Ferrata 1, 27100 Pavia, Italy

Numerical methods for PDE's, semiconductor applications

Mario Pulvirenti

pulvirenti@mat.uniroma1.it

Department of Mathematics, University of Rome-La Sapienza, Italy

Scaling limits in classical and quantum kinetic theory, in compressible flows

Laure Saint-Raymond

Laure.Saint-Raymond@ens.fr

Département de Mathématiques et Applications Ecole Normale Supérieure 45 rue d'Ulm, 75230 Paris Cedex 05, France

Kinetic equations, hydrodynamic limits fluid mechanics singular perturbations

Giuseppe Toscani

giuseppe.toscani@unipv.it

Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 PAVIA, Italy

Kinetic models in socio-economic and environmental sciences, nonlinear PDE's

Eric Vanden-Eijnden

eve2@cims.nyu.edu

Courant Institute of Mathamtical Sciences, New York University, NY 10027, USA

Applied mathematics, statistical mechanics, scientific computing

Dehua Wang

dwang@math.pitt.edu

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

Area of expertise: Partial differential equations and applied mathematics

Bernt Wennberg

wennberg@chalmers.se

Mathematical Sciences, Chalmers University of Technology and Göteborg University address: Chalmers University of Technology, SE41296 Göteborg, Sweden

Nonlinear kinetic equations, mathematical modelling

Zhouping Xin

zpxin@ims.cuhk.edu.hk

The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Room 701, Acedemic Building mailto: 1, Shatin, New Territories, Hong Kong, China

Nonlinear PDEs, applied mathematics, numerical analysis

Shih-Hsien Yu

mashyu@cityu.edu.hk
matysh@nus.edu.sg

Department of Mathematics, National University of Singapore, 2, Science Drive 2, Singapore 117543, Singapore

Boltzmann equation, viscous conservation laws, finite difference method

Huijiang Zhao

hhjjzhao@whu.edu.cn

School of Mathematics and Statistics Wuhan University, Wuhan 430072, China

Conservation laws, Boltzmann equation

Changjiang Zhu

cjzhu@mail.ccnu.edu.cn

School of Mathematics and Statistics Central China Normal University, Wuhan 430079, China

Hyperbolic systems of conservation laws

In memoriam: Seiji Ukai, co-founding editor

Go to top